1 |
YAMANAKA T, MINATO T, OKAZAKI K I, et al. Evolution and migration of lithium-deficient phases during electrochemical delithiation of large single crystals of LiFePO4[J]. ACS Applied Energy Materials, 2018, 1 (3): 1140-1145.
|
2 |
朱蕾, 江小标, 贾荻, 等. LiFePO4/S复合正极材料的制备及其电化学性能[J]. 储能科学与技术, 2019, 8(6): 1116-1125.
|
|
ZHU L, JIANG X B, JIA D, et al. Preparation and electrochemical performance of LiFePO4/S composite cathode materials[J]. Energy Storage Science and Technology, 2019, 8(6): 1116-1125.
|
3 |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367.
|
4 |
白雪平. 磷酸铁锂电池储能系统的应用[J]. 高科技与产业化, 2016, 4: 71-73.
|
|
BAI X P. Application of energy storage system for lithium ion phosphate batteries[J]. High-Technology & Commercialization, 2016, 4: 71-73.
|
5 |
LI Y, QI F, GUO H, et al. Characteristic investigation of an electrochemical-thermal coupled model for a LiFePO4/graphene hybrid cathode lithium-ion battery[J]. Case Studies in Thermal Engineering, 2019, 13: 100387-100395.
|
6 |
JUGOVIC D, USKOKOVIC D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders[J]. Journal of Power Sources, 2009, 190(2): 538-544.
|
7 |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
|
8 |
张世明, 车海英, 杨柯, 等. 基于LiFePO4和活性炭的混合型电化学储能器件研究[J]. 储能科学与技术, 2018, 7(2): 240-247.
|
|
ZHANG S M, CHE H Y, YANG K, et al. Development of hybrid electrochemical energy storage device based on LiFePO4 and activated carbon[J]. Energy Storage Science and Technology, 2018, 7(2): 240-247.
|
9 |
LEE S B, JANG I C, LIM H H, et al. Preparation and electrochemical characterization of LiFePO4 nanoparticles with high rate capability by a sol-gel method[J]. Journal of Alloys and Compounds, 2010, 491: 668-672.
|
10 |
BAN C M, YIN W J, TANG H W, et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes[J]. Advanced Energy Materials, 2012, 2: 1028-1032.
|
11 |
YANG Z, DAI Y, WANG S P, et al. How to make lithium iron phosphate better: A review exploring classical modification approaches in-depth and proposing future optimization methods[J]. Journal of Materials Chemistry A, 2016, 4: 18210-18222.
|
12 |
YANG J X, LI Z J, GUANG Z J, et al. Synthesis of high-performance LiFePO4 nanocrystals in pure water[J]. Green Chemistry, 2018, 20: 5215-5223.
|
13 |
LIU Y, CAO C. Enhanced electrochemical performance of nano-sized LiFePO4/C synthesized by an ultrasonic-assisted co-precipitation method[J]. Electrochimica Acta, 2010, 55: 4694-4697.
|
14 |
KUWAHARA A, SUZUKI S, MIYAYAMA M. Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties[J]. Journal of Electroceramics, 2010, 24: 69-75.
|
15 |
WANG Y F, ZHANG D, YU X, et al.Mechanoactivation-assisted synthesis and electrochemical characterization of manganese lightly doped LiFePO4[J]. Journal of Alloys and Compounds, 2010, 492: 675-680.
|
16 |
XU Y, ZHAO M, SUN B. Doping supervalent rare earth ion in LiFePO4/C through hydrothermal method[J]. Solid State Ionics, 2016, 291: 14-19.
|
17 |
BAN C M, YIN W J, TANG H W, et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes[J]. Advanced Energy Materials, 2012, 2(8): 1028-1032.
|
18 |
OMENYA F, CHERNOVA N A, UPRETI S, et al. Can vanadium be substituted into LiFePO4[J]. Chemistry of Materials, 2011, 23(21): 4733-4740.
|
19 |
BILECKA I, HINTENNACH A, ROSSELL M D, et al. Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance[J]. Journal of Materials Chemistry, 2011, 21: 5881-5890.
|
20 |
HERLE P S, ELLIS B, COOMBS N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates[J]. Nature Materials, 2004, 3: 147-152.
|
21 |
EFTEHARI A. LiFePO4/C nanocomposites for lithium-ion batteries[J]. Journal of Power Sources, 2017, 343: 395-411.
|
22 |
AVCI E, MAZMAN M, UZUN D, et al. High performance LiFePO4/CN cathode material promoted by polyaniline as carbon-nitrogen precursor[J]. Journal of Power Sources, 2013, 240(1): 328-337.
|
23 |
LIU Y Y, GUA J J, ZHANG J L, et al. Metal organic frameworks derived porous lithium iron phosphatewith continuous nitrogen-doped carbon networks for lithium ionbatteries[J]. Journal of Power Sources, 2016, 304: 42-50.
|
24 |
ZHANG Y, HUANG Y, WANG X C, et al. Improved electrochemical performance of lithium iron phosphate in situ coated with hierarchical porous nitrogen-doped graphene-like membrane[J]. Journal of Power Sources, 2016, 305: 122-127.
|
25 |
HA J, PARK S K, YU S H, et al. A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries[J]. Nanoscale, 2013, 5: 8647-8655.
|
26 |
DING Z J, ZHAO L, SUO L, et al. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ionbatteries: A combined experimental and theoretical study[J]. Physical Chemistry Chemical Physics, 2011, 13: 15127-15133.
|
27 |
HAN B, MENG X D, MA L, et al. Nitrogen-doped carbondecorated LiFePO4 composite synthesized via a microwave heating route using polydopamine as carbon-nitrogen precursor[J]. Ceramics International, 2016, 42(2): 2789-2797.
|
28 |
DING W, X U L, CHEN X, FU Q H, et al. Large-scale fabrication of graphene-like carbon nanospheres for lithium ion battery application[J]. Electrochimica Acta, 2016, 218: 237-242.
|
29 |
YANG J L, WANG J J, LI X F, et al. Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries[J]. Journal of Materials Chemistry, 2012, 22(15): 7537-7543.
|
30 |
WANG B, WANG Q M, XU B H, et al. The synergy effect on Li storage of LiFePO4 withactivated carbon modifications[J]. RSC Advances, 2013, 3(43): 20024-20033.
|
31 |
AN B G, XU S F, LI L X, et al. Carbon nanotubes coated with a nitrogen-dopedcarbon layer and itsenhanced electrochemicalcapacitance[J]. Journal of Materials Chemistry A, 2013, 1(24): 7222-7228.
|