储能科学与技术 ›› 2021, Vol. 10 ›› Issue (2): 462-469.doi: 10.19799/j.cnki.2095-4239.2020.0361

• 储能材料与器件 • 上一篇    下一篇

锂离子电池正极材料循环稳定性的基因规律

杨民安(), 陈宁(), 王博, 张乾, 陈敬沛, 赵海雷, 李福燊   

  1. 北京科技大学材料科学与工程学院,北京 100083
  • 收稿日期:2020-11-06 修回日期:2020-11-29 出版日期:2021-03-05 发布日期:2021-03-05
  • 通讯作者: 陈宁 E-mail:yangminan666@163.com;nchen@sina.com
  • 作者简介:杨民安(1997—),男,硕士研究生,主要从事新能源材料研究,E-mail:yangminan666@163.com
  • 基金资助:
    科技部重点专项计划项目(2016YFB0700503-7)

Gene law about cycle stability of cathode material for lithium-ion batteries

Min'an YANG(), Ning CHEN(), Bo WANG, Qian ZHANG, Jingpei CHEN, Hailei ZHAO, Fushen LI   

  1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2020-11-06 Revised:2020-11-29 Online:2021-03-05 Published:2021-03-05
  • Contact: Ning CHEN E-mail:yangminan666@163.com;nchen@sina.com

摘要:

锂离子电池正极材料需要有较大的能量密度和稳定的循环寿命,循环寿命与其脱锂前后的结构变化有直接关系。但是,影响循环寿命的原子层次因素是什么,还没有明确的答案。探究和优化正极材料的核心工作就是要寻找微观结构与性能之间的关系,这里不仅需要用到大数据统计,也需要对比分析脱锂前后的结构变化特征参数。通过分子动力学方法计算得到了18种典型正极体系的体积和弹性模量的变化,分析发现不同正极材料体系都对应了一个反映收缩能力的压强值,它主要由体积变化率与弹性模量的乘积决定,体现了不同材料脱锂后的稳定性差异。对于含Co/Ni/Mn/Fe等过渡族金属的正极材料,这个参数与循环稳定性呈一定的线性关系,收缩压强大的体系有更优秀的循环性能。同时,电子结构层次中的电荷密度也是影响锂离子电池循环性能的本征因素之一。本研究探索也表明,大数据配合理论计算是寻找材料规律的有效方法,得到的基本规律对于优化和改善循环寿命有一定的理论指导意义。

关键词: 锂离子电池, 正极材料, 循环寿命, 大数据, 分子动力学, 电荷密度

Abstract:

The cathode material of lithium-ion batteries must have a large energy density and stable cycle life. Cycle life is directly related to structural changes before and after lithium loss. However, the atomic-level factor affecting the cycle life has not been clearly determined. The core work of exploring and optimizing cathode materials is finding the relationship between microstructures and performance, which requires big data statistics and comparing and analyzing the characteristic parameters of structural changes before and after lithium loss. The volume and elastic modulus of 18 typical positive materials were calculated using the molecular dynamics method. We found that different cathode materials corresponding to different pressures can reflect the shrinkage ability, mainly decided by the product of the volume change rate and elastic modulus. The pressure reflects the system's adaptability during contraction after lithium loss and the difference in the stability of different materials before and after lithium loss. For cathode materials containing transition metals such as Co, Ni, Mn, and Fe, this parameter has a certain linear relationship with the cycling stability; that is, the system with the higher pressure has the better cyclic performance. At the same time, the charge density in the electronic structure layer is also one of the intrinsic factors affecting the cycle performance of lithium-ion batteries. This research also shows that using big data combined with theoretical calculations is an effective method to find the laws of materials. The basic laws obtained have certain theoretical guiding significance for optimizing and improving the cycle life.

Key words: lithium-ion battery, cathode materials, cycle life, big data, molecular dynamics, charge density

中图分类号: