1 |
张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.
|
|
ZHANG X J, CHEN H S, LIU J C, et al. Research progress in compressed air energy storage system: A review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40.
|
2 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system[J]. Applied Energy, 2017, 199: 96-106.
|
3 |
GUO H, XU Y J, CHEN H S, et al. Thermodynamic characteristics of a novel supercritical compressed air energy storage system[J]. Energy Conversion and Management, 2016, 115: 167-177.
|
4 |
张建军, 周盛妮, 李帅旗, 等. 压缩空气储能技术现状与发展趋势[J]. 新能源进展, 2018, 6(2): 140-150.
|
|
ZHANG J J, ZHOU S N, LI S Q, et al. Overview and development tendency of compressed air energy storage[J]. Advances in New and Renewable Energy, 2018, 6(2): 140-150.
|
5 |
HÜTTERMANN L, SPAN R. Influence of the heat capacity of the storage material on the efficiency of thermal regenerators in liquid air energy storage systems[J]. Energy, 2019, 174: 236-245.
|
6 |
WANG L, LIN X P, CHAI L, et al. Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based pumped thermal electricity storage[J]. Energy Conversion and Management, 2019, 185: 593-602.
|
7 |
李莹. 超临界压缩空气储能系统蓄冷材料和换热器的研究[D]. 北京: 北京工业大学,2019.
|
|
LI Y. Study on cold storage material and heat exchanger in supercritical compressed air energy storage system[D]. Beijing: Beijing University of Technology, 2019.
|
8 |
JI L, CHEN H S, ZHANG X J, et al. Research and development status and application prospect of compressed air energy storage technology[J]. High Technology and Industrialization, 2018(4): 52-58.
|
9 |
罗宁, 何青, 刘文毅. 压缩空气储能系统储气装置研究现状与分析[J]. 储能科学与技术, 2018, 7(3): 489-494.
|
|
LUO N, HE Q, LIU W Y. The development status and energy storage characteristic of gas storage device of compressed air energy storage system[J]. Energy Storage Science and Technology, 2018, 7(3): 489-494.
|
10 |
侯磊, 王子驰, 李营超, 等. 压缩空气储能系统分析及多目标优化[J]. 储能科学与技术, 2021, 10(1): 379-384.
|
|
HOU L, WANG Z C, LI Y C, et al. Analysis and multi-objective optimization of CAES system[J]. Energy Storage Science and Technology, 2021, 10(1): 379-384.
|
11 |
AMEEL B, T'JOEN C, DE KERPEL K, et al. Thermodynamic analysis of energy storage with a liquid air Rankine cycle[J]. Applied Thermal Engineering, 2013, 52(1): 130-140.
|
12 |
金光, 赵文秀, 赵军, 等. 直接接触式蓄热技术的发展及研究现状[J]. 储能科学与技术, 2019, 8(3): 477-487.
|
|
JIN G, ZHAO W X, ZHAO J, et al. Development and research status on the technology of direct contact thermal energy storage[J]. Energy Storage Science and Technology, 2019, 8(3): 477-487.
|
13 |
HASNAIN S M. Review on sustainable thermal energy storage technologies, part I: Heat storage materials and techniques[J]. Energy Conversion and Management, 1998, 39(11): 1127-1138.
|
14 |
LIAO Z R, ZHONG H, XU C, et al. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied Energy, 2020, 269: 115-132.
|
15 |
李国跃. 超临界压缩空气储能填充床分级蓄冷方法研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2020.
|
|
LI G Y. Research on cascaded packed bed cryogenic storage method based supercritical air energy storage system[D]. Beijing: University of Chinese Academy of Sciences (Institute of Engineering Thermophysics, CAS), 2020.
|