1 |
朱茂桃, 邵瑜, 徐晓明. 平面热管与液冷作用下锂离子电池热管理系统散热特性[J]. 科学技术与工程, 2019, 19(36): 343-348.
|
|
ZHU M T, SHAO Y, XU X M. Heat dissipation characteristics of lithium-ion battery thermal management system under the action of flat plate heat pipe and liquid cooling[J]. Science Technology and Engineering, 2019, 19(36): 343-348.
|
2 |
CHOUCHANE M, RUCCI A, LOMBARDO T, et al. Lithium ion battery electrodes predicted from manufacturing simulations: Assessing the impact of the carbon-binder spatial location on the electrochemical performance[J]. Journal of Power Sources, 2019, 444: 227-235.
|
3 |
SPIELBAUER M, BERG P, RINGAT M, et al. Experimental study of the impedance behavior of 18650 lithium-ion battery cells under deforming mechanical abuse[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101039.
|
4 |
LIU Y, YANG B, DONG X, et al. A simple prelithiation strategy to build a high-rate and long-life lithium-ion battery with improved low-temperature performance[J]. Angewandte Chemie (International Ed in English), 2017, 56(52): 16606-16610.
|
5 |
赵国柱, 招晓荷, 徐晓明, 等. 基于最小能耗的动力电池风冷控制策略[J]. 储能科学与技术, 2019, 8(4): 751-758.
|
|
ZHAO G Z, ZHAO X H, XU X M, et al. Air cooling strategy of power battery based on minimum energy consumption[J]. Energy Storage Science and Technology, 2019, 8(4): 751-758.
|
6 |
FAN Y Q, BAO Y, LING C, et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries[J]. Applied Thermal Engineering, 2019, 155: 96-109.
|
7 |
ZHENG N B, FAN R J, SUN Z Q, et al. Thermal management performance of a fin-enhanced phase change material system for the lithium-ion battery[J]. International Journal of Energy Research, 2020, 44(9): 7617-7629.
|
8 |
ZOU D Q, LIU X S, HE R J, et al. Preparation of a novel composite phase change material (PCM) and its locally enhanced heat transfer for power battery module[J]. Energy Conversion and Management, 2019, 180: 1196-1202.
|
9 |
YU G Y, CHIANG S W, CHEN W, et al. Thermal management of a Li-ion battery for electric vehicles using PCM and water-cooling board[J]. Key Engineering Materials, 2019, 814: 307-313.
|
10 |
TANG Y, TANG H, LI J, et al. Experimental investigation of capillary force in a novel sintered copper mesh wick for ultra-thin heat pipes[J]. Applied Thermal Engineering, 2017, 115: 1020-1030.
|
11 |
周鑫晨, 章学来, 韩兴超, 等. 脉动热管/相变储能耦合技术研究进展[J]. 现代化工, 2018, 38(12): 58-61, 63.
|
|
ZHOU X C, ZHANG X L, HAN X C, et al. Review on coupling technology between pulsating heat pipe and phase change energy storage[J]. Modern Chemical Industry, 2018, 38(12): 58-61, 63.
|
12 |
田晟, 肖佳将. 基于正交层次法的锂离子电池热管散热模组数值模拟分析[J]. 化工学报, 2020, 71(8): 3510-3517.
|
|
TIAN S, XIAO J J. Numerical simulation and analysis of lithium-ion battery heat pipe cooling module based on orthogonal analytic hierarchy process[J]. CIESC Journal, 2020, 71(8): 3510-3517.
|
13 |
JIN X R, DUAN X T, JIANG W J, et al. Structural design of a composite board/heat pipe based on the coupled electro-chemical-thermal model in battery thermal management system[J]. Energy, 2021, 216: doi: 10.1016/j.energy.2020.119234.
|
14 |
张靖周. 高等传热学[M]. 北京: 科学出版社, 2009.
|
|
ZHANG J Z. Advanced heat transfer[M]. Beijing: Science Press, 2009.
|
15 |
AN Z J, JIA L, WEI L T, et al. Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model[J]. Applied Thermal Engineering, 2018, 137: 792-807.
|
16 |
SRINIVASAN V, WANG C Y. Analysis of electrochemical and thermal behavior of Li-ion cells[J]. Journal of the Electrochemical Society, 2003, 150(1): doi: 10.1149/1.1526512.
|
17 |
WANG Z Q, CHEN Y X, LI Y. Development of RC model for thermal dynamic analysis of buildings through model structure simplification[J]. Energy and Buildings, 2019, 195: 51-67.
|
18 |
NELSON P, DEES D, AMINE K, et al. Modeling thermal management of lithium-ion PNGV batteries[J]. Journal of Power Sources, 2002, 110(2): 349-356.
|
19 |
WANG Z Q, CHEN Y X, LI Y. Development of RC model for thermal dynamic analysis of buildings through model structure simplification[J]. Energy and Buildings, 2019, 195: 51-67.
|