[1] RAO Z, WANG S. A review of power battery thermal energy management[J]. Renewable & Sustainable Energy Reviews, 2011, 15(9):4554-4571.
[2] 赵国柱, 李亮, 招晓荷. 混合动力汽车用锂电池热管理系统[J]. 储能科学与技术, 2018, 7(6):198-203. ZHAO Guozhu, LI Liang, ZHAO Xiaohe. Lithium battery thermal management system for hybrid electric vehicles[J]. Energy Storage Science and Technology, 2018, 7(6):198-203.
[3] 陈凯, 汪双凤. 基于遗传算法的风冷式动力电池热管理系统优化[J]. 工程热物理学报, 2018, 39(2):384-388. CHEN Kai, WANG Shuangfeng. Optimization of thermal management system for air-cooled power batteries based on genetic algorithm[J]. Journal of Engineering Thermophysics, 2018, 39(2):384-388.
[4] 陈凯, 汪双凤. 基于贪婪算法的风冷式动力电池热管理系统优化[J]. 工程热物理学报, 2018, 39(5):1092-1096. CHEN Kai, WANG Shuangfeng. Optimization of thermal management system for air-cooled power batteries based on greedy algorithm[J]. Journal of Engineering Thermophysics, 2018, 39(5):1092-1096.
[5] JIANG F, XU X, HU D. Analysis of heat dissipation performance between a horizontal and longitudinal battery pack based on forced air cooling[J]. Heat Transfer-asian Research, 2017, 46(7):778-792.
[6] MAHAMUD R, PARK C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196(13):5685-5696.
[7] GAO Yuping, SHAO Shuangquan, TIAN Shen, et al. Energy consumption analysis of the forced-air cooling process with alternating ventilation mode for fresh horticultural produce[J]. Energy Procedia, 2017, 142:2642-2647.
[8] TAO W, TSENG K J, ZHAO J. Development of effcient air-cooling strategies for lithium-ion battery module based on empirical heat source model[J]. Applied Thermal Engineering, 2015, 90:521-529.
[9] 郭阳东. 基于典型城市工况的电动汽车动力电池热管理策略研究[D]. 南京:南京航空航天大学, 2017. GUO Yangdong. Research on thermal management strategy of power battery based on typical city driving cycles of electric vehicles[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[10] HE F, MA L. Thermal management of batteries employing active temperature control and reciprocating cooling flow[J]. International Journal of Heat and Mass Transfer, 2015, 83:164-172.
[11] CHOI Y S, KANG D M. Prediction of thermal behaviors of an aircooled lithium-ion battery system for hybrid electric vehicles[J]. Journal of Power Sources, 2014, 270:273-280.
[12] CHONG Z, FEI L, HUA Z, et al. A real-time battery thermal management strategy for connected and automated hybrid electric vehicles (CAHEVs) based on iterative dynamic programming[J]. IEEE Transactions on Vehicular Technology, 2018,67(9):8077-8084.
[13] CHONG Z, FEI L, HUA Z, et al. A fnite-set model-based predictive battery thermal management in connected and automated hybrid electric vehicles[C]//Institute of Electrical and Electronics Engineers (IEEE) NY. Curran Associates, Inc. 2018:3428-3433.
[14] RAJAGOPALAN A, WASHINGTON G. Intelligent control of hybrid electric vehicle using GPS information[C]//SAE Technical Paper, 2002.
[15] CHEWPUTTANAGUL P, JACKSON D J. A road recognition system using GPS/GIS integrated system[C]//Tencon IEEE Region 10 Conference, 2004.
[16] PESARAN A A, SWAN D, OLSON J, et al. Thermal analysis and performance of a battery pack for a hybrid electric vehicles[R]. National Renewable Energy Laboratory, 1998.
[17] 余志生. 汽车理论[M]. 北京:机械工业出版社, 2004. YU Zhisheng. Automobile theory[M]. Beijing:Machinery Industry Press, 2004.
[18] NEWMAN, BERNARDI, PAWLIKOWSKI. A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1):5-12.
[19] 赵镇南. 传热学[M]. 北京:高等教育出版社, 2002:220-222. ZHAO Zhennan. Heat Transfer[M]. Beijing:Higher Education Press, 2002:220-222.
[20] 宋秋红. 工程流体力学[M]. 第2版, 上海:上海交通大学出版社, 2012. SONG Qiuhong. Engineering fluid dynamics[M]. 2nd Edition, Shanghai:Shanghai Jiaotong University Press, 2012.
[21] RICHARD BELLMAN. Dynamic programming[M]. New York:Dover Publications, 2003.
[22] 中华人民共和国交通部. JTG D20-2006公路线路设计规范[S]. 北京:人民交通出版社,2006. Ministry of Communications of the People's Republic of China. JTG D20-2006 highway line design code[S]. Beijing:People's Transportation Press. 2006. |