[1] TYAGI V, KAUSHIK S, TYAGI S. Development of phase change materials based microencapsulated technology for buildings:A review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(2):1373-1391.
[2] REGIN A F, SOLANKI S C, SAINI J S. Heat transfer characteristics of thermal energy storage system using PCM capsules:A review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(9):2438-2458.
[3] MAO Qianjun. Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant[J]. Renewable & Sustainable Energy Reviews, 2016, 59:320-327.
[4] CHENG Xiaomin, LI Ge, YU Guoming, et al. Effect of expanded graphite and carbon nanotubes on the thermal performance of stearic acid phase change materials[J]. Journal of Materials Science, 2017, 52(20):12370-12379.
[5] DAO T D, JEONG H M. A Pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon, 2016, 99:49-57.
[6] 倪睿嘉, 倪卓. 储能相变微胶囊材料的制备及其应用[J]. 化学与黏合, 2017(1):46-48. NI Jiarui, NI Zhuo. Preparation and application of microcapsules materials and phase change materials for energy storage[J]. Chemistry and Adhesion, 2017, 39(1):46-50.
[7] 薛芸. 应用优化相变储能材料提高北方严寒地区建筑围护结构质量[J]. 建筑技术, 2017, 48(4):360-363. XUE Yun. Using optimized phase-change material to improve building enclosure structure quality in northern cold regions of China[J]. Architecture Technology, 2017, 48(4):360-363.
[8] AKHIANI A R, MEHRALI M, TAHAN LATIBARI S, et al. Onestep preparation of form-stable phase change material through selfassembly of fatty acid and graphene[J]. The Journal of Physical Chemistry C, 2015:22787-22796.
[9] KARTHIK M, FAIK A, BLANCO-RODRÍGUEZ, P, et al. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications[J]. Carbon, 2015, 94:266-276.
[10] YANG Xiaojiao, YUAN Yanping, ZHANG Nan, et al. Preparation and properties of myristic-palmitic-stearic acid/expanded graphite composites as phase change materials for energy storage[J]. Solar Energy, 2014, 99:259-266.
[11] MALLOW A, ABDELAZIZ O, Graham S. Thermal charging study of compressed expanded natural graphite/phase change material composites[J]. Carbon, 2016, 109.
[12] DAO T D, JEONG H M. Novel stearic acid/graphene core-shell composite microcapsule as a phase change material exhibiting high shape stability and performance[J]. Solar Energy Materials and Solar Cells, 2015, 137:227-234.
[13] XU Xin, DONG Bitao, DING Shujiang, et al. Hierarchical NiCoO2 nanosheets supported on amorphous carbon nanotubes for highcapacity lithium-ion batteries with a long cycle life[J]. Journal of Materials Chemistry A, 2014, 2(32):13069-13074.
[14] 祖胜臻, 迟伟东, 沈曾民, 等. 碳纳米管/炭复合材料的制备及其性能的研究[J]. 炭素技术, 2006, 25(2):11-15. ZU Shengzhen, CHI Weidong, SHEN Zengmin, et al. Preparation and investigation on properties of cnts/c composites[J]. Carbon Techniques, 2006, 25(2):11-15.
[15] 武玺旺, 肖建中, 夏风, 等. 碳纳米管的分散方法与分散机理[J]. 材料导报, 2011, 25(9):16-18. WU Xiwang, XIAO Jianzhong, XIA Feng, et al. Dispersion methods and dispersion mechanism of carbon nanotubes[J]. Materials Review, 2011, 25(9):16-18.
[16] 张培亭, 高洪强, 肖建斌. 加工工艺对碳纳米管增强硅橡胶性能的影响[J]. 世界橡胶工业, 2016, 43(10):30-34. ZHANG Peiting, GAO Hongqiang, XIAO Jianbin. Influence of Process technology on properties of silicone rubber modifed by carbon Nanotubes[J]. World Rubber Industry, 2016, 43(10):30-34.
[17] 庞秋, 谷万里, 盛文斌. 碳纳米管增强铝基复合材料的研究进展[J]. 材料导报, 2008, 22(s3):41-44. PANG Qiu, GU Wanli, SHENG Wenbin. Research progress in carbon nanotube reinforced aluminum matrix composites[J]. Materials Review, 2008, 22(s3):41-44.
[18] 陈传盛, 刘天贵, 陈小华, 等. 碳纳米管的表面修饰及其应用[J]. 机械工程材料, 2007, 31(11):1-9. CHEN Chuansheng, LIU Tiangui, CHEN Xiaohua, et al. Surface modifcation of carbon nanotubes and their application[J]. Materials for Mechanical Engineering, 2007, 31(11):1-9.
[19] 倪卓, 白嘉健, 曾茵茵. 微胶囊碳纳米管储能材料的制备与表征[J]. 储能科学与技术, 2016, 5(2):215-221. NI Zhuo, BAI Jiajian, ZENG Yinyin. Preparation and characterization of microcapsules energy storage materials with carbon nanotube modifed[J]. Energy Storage Science and Technology, 2016, 5(2):215-221.
[20] GONÇALVES A G, FIGUEIREDO J L, ÓRFÃO J J M, et al. Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts[J]. Carbon, 2010, 48(15):4369-4381.
[21] SZYMANSKI H A. IR, theory and practice of infrared spectroscopy[M]. NewYork:Plenum Press, 1964.
[22] SAITO T, MATSUSHIGE K, TANAKA K. Chemical treatment and modification of multi-walled carbon nanotubes[J]. Physica B Condensed Matter, 2002, 323(1):280-283. |