1 |
赵国柱, 李亮, 招晓荷, 等. 混合动力汽车用锂电池热管理系统[J]. 储能科学与技术, 2018, 7(6): 1146-1151.
|
|
ZHAO G Z, LI L, ZHAO X H, et al. Lithium battery thermal management system for hybrid vehicles[J]. Energy Storage Science and Technology, 2018, 7(6): 1146-1151.
|
2 |
CHEN K, CHEN Y M, LI Z Y, et al. Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2018, 127: 393-401.
|
3 |
JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: A comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392.
|
4 |
WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224.
|
5 |
XIA G D, CAO L, BI G L. A review on battery thermal management in electric vehicle application[J]. Journal of Power Sources, 2017, 367: 90-105.
|
6 |
YANG S T, LING C, FAN Y Q, et al. A review of lithium-ion battery thermal management system strategies and the evaluate criteria[J]. International Journal of Electrochemical Science, 2019, 14: 6077-6107.
|
7 |
LING Z Y, ZHANG Z G, SHI G Q, et al. Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 427-438.
|
8 |
洪思慧, 张新强, 汪双凤, 等. 基于热管技术的锂离子动力电池热管理系统研究进展[J]. 化工进展, 2014, 33(11): 2923-2927.
|
|
HONG S H, ZHANG X Q, WANG S F, et al. Review on application of heat pipe technology in lithium-ion power battery thermal management system[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2923-2927.
|
9 |
WANG Ziyuan, LI Xinxi, ZHANG Guoqing, et al. Thermal management investigation for lithium-ion battery module with different phase change materials[J]. RSC Advances, 2017, 7(68): 42909-42918.
|
10 |
LAI Yongxin, WU Weixiong, CHEN Kai , et al. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack[J]. International Journal of Heat and Mass Transfer, 2019,144:118581.
|
11 |
DAN Dan, YAO Chengning, ZHANG Yangjun, et al. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model[J]. Applied Thermal Engineering, 2019, 162: 114183.
|
12 |
LI Hong, LI Xin. The present situation and the development trend of new materials used in automobile lightweight[J]. Applied Mechanics and Materials, 2012, 189: 58-62.
|
13 |
PENG Peng, JIANG Fangming. Thermal behavior analyses of stacked prismatic LiCoO2 lithium-ion batteries during oven tests[J]. International Journal of Heat and Mass Transfer, 2015, 88: 411-423.
|
14 |
ZHAO Lei, ZHU Maotao, XU Xiaoming, et al. Thermal runaway characteristics on NCM lithium-ion batteries triggered by local heating under different heat dissipation conditions[J]. Applied Thermal Engineering, 2019, 159: 113847.
|
15 |
KONG Depeng, WANG Gongquan, PING Ping, et al. Numerical investigation of thermal runaway behavior of lithium-ion batteries with different battery materials and heating conditions[J]. Applied Thermal Engineering, 2021, 189: 116661.
|
16 |
SEMENOV N N. Some problems in chemical kinetics and reactivity, volume 2[M].Princeton: Princeton University Press, 2017.
|
17 |
BÖRGER A, MERTENS J, WENZL H. Thermal runaway and thermal runaway propagation in batteries: What do we talk about?[J]. Journal of Energy Storage, 2019, 24: 100649.
|
18 |
SHAH K, CHALISE D, JAIN A. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of Power Sources, 2016, 330: 167-174.
|
19 |
王发成, 王子冬, 胡道中, 等. 车用动力电池组集总参数换热模型[J]. 兵工学报, 2014, 35(2): 145-151.
|
|
WANG F C, WANG Z D, HU D Z, et al. A lumped-parameter model of battery pack heat transfer in electric vehicles[J]. Acta Armamentarii, 2014, 35(2): 145-151.
|
20 |
GOMADAM P M, WHITE R E, WEIDNER J W. Modeling heat conduction in spiral geometries[J]. Proceedings-Electrochemical Society, 2005: 146-159.
|
21 |
BERNARDI D. A general energy balance for battery systems[J]. Journal of The Electrochemical Society,1958, 132(1): 5-12.
|
22 |
翟文波, 史晓妍, 朱蕾. 锂离子电池开路电压温度系数的测试与分析[J]. 电源技术, 2013, 37(11): 1954-1955+1968.
|
|
ZHAI Wenbo, SHI Xiaoyan, ZHU Lei. Test and analysis of temperature coefficient of open circuit voltage of lithium ion battery[J]. Chinese Journal of Power Sources, 2013, 37(11): 1954-1955+1968.
|
23 |
李慧芳, 李飞. 锂离子电池的可逆及不可逆产热测试[J]. 电源技术, 2016, 40(11): 2128-2131.
|
|
LI H F, LI F. Determination of reversible and irreversible heat production of cylindrical Li-ion cell during charge and discharge process[J]. Chinese Journal of Power Sources, 2016, 40(11): 2128-2131.
|
24 |
云凤玲, 卢世刚. 基于高镍三元材料锂离子动力电池在循环前后的热特性分析[J]. 稀有金属, 2018, 42(2): 182-190.
|
|
YUN Fengling, LU Shigang. Analysis of thermal characteristics of lithium-ion power batteries based on high nickel ternary materials before and after cycling[J]. Rare Metals, 2018, 42(2): 182-190.
|
25 |
文华, 黄伟, 赖俊全. 锂离子电池熵热系数间接计算方法[J]. 南昌大学学报(工科版), 2019, 41(1): 70-75.
|
|
WEN H, HUANG W, LAI J Q. Indirect calculation method of entropy heat coefficient of lithium-ion battery[J]. Journal of Nanchang University (Engineering & Technology), 2019, 41(1): 70-75.
|
26 |
TIAN Jinpeng, XIONG Rui, SHEN Weixiang, et al. Electrode ageing estimation and open circuit voltage reconstruction for lithium ion batteries[J]. Energy Storage Materials, 2021, 37: 283-295.
|
27 |
FARMANN A, SAUER D U. A study on the dependency of the open-circuit voltage on temperature and actual aging state of lithium-ion batteries[J]. Journal of Power Sources,2017, 347: 1-13.
|
28 |
冯能莲, 马瑞锦, 陈龙科. 18650型锂离子动力电池热特性研究[J]. 电源技术, 2019, 43(4): 564-567.
|
|
FENG Nenglian, MA Ruijin, CHEN Longke. Research on thermal characteristics of 18650 lithium-ion power battery[J]. Chinese Journal of Power Sources, 2019, 43(4): 564-567.
|