储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1877-1890.doi: 10.19799/j.cnki.2095-4239.2021.0364
杨家豪1,2(), 施兆平1,2, 王意波1,2, 葛君杰1,2(), 刘长鹏1,2, 邢巍1,2
收稿日期:
2021-07-26
修回日期:
2021-08-13
出版日期:
2021-11-05
发布日期:
2021-11-03
通讯作者:
葛君杰
E-mail:yjh@ciac.ac.cn;gejj@ciac.ac.cn
作者简介:
杨家豪(1997—),男,硕士研究生,研究方向为PEM水电解中的析氧催化剂,E-mail:基金资助:
Jiahao YANG1,2(), Zhaoping SHI1,2, Yibo WANG1,2, Junjie GE1,2(), Changpeng LIU1,2, Wei XING1,2
Received:
2021-07-26
Revised:
2021-08-13
Online:
2021-11-05
Published:
2021-11-03
Contact:
Junjie GE
E-mail:yjh@ciac.ac.cn;gejj@ciac.ac.cn
摘要:
质子交换膜(PEM)水电解的阳极催化剂需要耐受强酸性环境以及析氧反应(OER)条件下的高氧化电位。为了加深对酸性介质中OER过程的理解以开发具有更好稳定性与更高活性的电催化剂,研究和发展原位表征技术显得尤为重要。该综述介绍了几种用于酸性OER研究的原位表征技术,包括:原位X射线光电子能谱技术、原位X射线吸收谱技术、原位X射线衍射/散射技术、原位电化学红外技术、原位电化学拉曼技术、原位电感耦合等离子体-质谱技术、微分电化学质谱/在线电化学质谱技术、电化学石英微晶天平技术。重点讨论了这些技术的原位装置设计以及它们在酸性OER研究领域的具体应用。最后总结了这些技术的特征,并指出用于酸性OER的原位表征技术的发展之有待解决的问题,即新技术的研发与原位技术间的联用、原位装置的改进及时空分辨率的提高。
中图分类号:
杨家豪, 施兆平, 王意波, 葛君杰, 刘长鹏, 邢巍. 用于酸性析氧反应研究的原位表征技术[J]. 储能科学与技术, 2021, 10(6): 1877-1890.
Jiahao YANG, Zhaoping SHI, Yibo WANG, Junjie GE, Changpeng LIU, Wei XING. In-situ/operando characterization techniques for oxygen evolution in acidic media[J]. Energy Storage Science and Technology, 2021, 10(6): 1877-1890.
1 | LIN H Y, WU Q W, CHEN X Y, et al. Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China[J]. Renewable Energy, 2021, 173: 569-580. |
2 | SHI Z P, WANG X, GE J J, et al. Fundamental understanding of the acidic oxygen evolution reaction: Mechanism study and state-of-the-art catalysts[J]. Nanoscale, 2020, 12(25): 13249-13275. |
3 | CHEN Z J, DUAN X G, WEI W, et al. Electrocatalysts for acidic oxygen evolution reaction: Achievements and perspectives[J]. Nano Energy, 2020, 78: 105392. |
4 | JIN H, JOO J, CHAUDHARI N K, et al. Recent progress in bifunctional electrocatalysts for overall water splitting under acidic conditions[J]. ChemElectroChem, 2019, 6(13): 3244-3253. |
5 | KUMAR A. Hybrid energy option for a local community in punjab- A case study on sustainable energy[J]. International Journal for Research in Applied Science and Engineering Technology, 2019, 7(12): 442-446. |
6 | SHAN J Q, ZHENG Y, SHI B Y, et al. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation[J]. ACS Energy Letters, 2019, 4(11): 2719-2730. |
7 | SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. |
8 | WANG C, LAN, et al. Iridium-based catalysts for solid polymer electrolyte electrocatalytic water splitting[J]. ChemSusChem, 2019, 12(8): 1576-1590. |
9 | LI Y J, SUN Y J, QIN Y N, et al. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials[J]. Advanced Energy Materials, 2020, 10(11): 1903120. |
10 | FAN M, LIANG X, CHEN H, et al. Low-iridium electrocatalysts for acidic oxygen evolution[J]. Dalton Transactions Cambridge, England, 2020, 49(44): 15568-15573. |
11 | LIU Y P, LIANG X, CHEN H, et al. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chinese Journal of Catalysis, 2021, 42(7): 1054-1077. |
12 | GU X K, CAMAYANG J C A, SAMIRA S, et al. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities[J]. Journal of Catalysis, 2020, 388: 130-140. |
13 | SONG H J, YOON H, JU B, et al. Highly efficient perovskite-based electrocatalysts for water oxidation in acidic environments: A mini review[J]. Advanced Energy Materials, 2021, 11(27): 2002428. |
14 | SIWAL S S, YANG W Q, ZHANG Q B. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media[J]. Journal of Energy Chemistry, 2020, 51: 113-133. |
15 | REIER T, NONG H N, TESCHNER D, et al. Electrocatalytic oxygen evolution reaction in acidic environments—Reaction mechanisms and catalysts[J]. Advanced Energy Materials, 2017, 7(1): 1601275. |
16 | LI L, WANG P, SHAO Q, et al. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction[J]. Advanced Materials (Deerfield Beach, Fla), 2021: e2004243. |
17 | HAN Y, ZHANG H, YU Y, et al. In situ characterization of catalysis and electrocatalysis using APXPS[J]. ACS Catalysis, 2021, 11(3): 1464-1484. |
18 | ARRIGO R, HÄVECKER M, SCHUSTER M E, et al. In situ study of the gas-phase electrolysis of water on platinum by NAP-XPS[J]. Angewandte Chemie (International Ed in English), 2013, 52(44): 11660-11664. |
19 | SANCHEZ CASALONGUE H G, NG M L, KAYA S, et al. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2014, 53(28): 7169-7172. |
20 | PFEIFER V, JONES T E, VELASCO VÉLEZ J J, et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces[J]. Chemical Science, 2017, 8(3): 2143-2149. |
21 | YU L W, TAKAGI Y, NAKAMURA T, et al. Non-contact electric potential measurements of electrode components in an operating polymer electrolyte fuel cell by near ambient pressure XPS[J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(45): 30798-30803. |
22 | RAO R R, KOLB M J, HWANG J, et al. Surface orientation dependent water dissociation on rutile ruthenium dioxide[J]. The Journal of Physical Chemistry C, 2018, 122(31): 17802-17811. |
23 | SAVELEVA V A, WANG L, KASIAN O, et al. Insight into the mechanisms of high activity and stability of iridium supported on antimony-doped tin oxide aerogel for anodes of proton exchange membrane water electrolyzers[J]. ACS Catalysis, 2020, 10(4): 2508-2516. |
24 | LUO E G, CHU Y Y, LIU J, et al. Pyrolyzed M-Nx catalysts for oxygen reduction reaction: Progress and prospects[J]. Energy & Environmental Science, 2021, 14(4): 2158-2185. |
25 | LI J K, GONG J L. Operando characterization techniques for electrocatalysis[J]. Energy & Environmental Science, 2020, 13(11): 3748-3779. |
26 | PARK J, CHO J. Advances in understanding mechanisms of perovskites and pyrochlores as electrocatalysts using in situ X-ray absorption spectroscopy[J]. Angewandte Chemie (International Ed in English), 2020, 59(36): 15314-15324. |
27 | FANG L Z, SEIFERT S, WINANS R E, et al. Operando XAS/SAXS: Guiding design of single-atom and subnanocluster catalysts[J]. Small Methods, 2021, 5(5): 2001194. |
28 | TIMOSHENKO J, ROLDAN CUENYA B. In situ/Operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chemical Reviews, 2021, 121(2): 882-961. |
29 | WANG M Y, ÁRNADÓTTIR L, XU Z J, et al. In situ X-ray absorption spectroscopy studies of nanoscale electrocatalysts[J]. Nano-Micro Letters, 2019, 11(1): 1-18. |
30 | BINNINGER T, FABBRI E, PATRU A, et al. Electrochemical flow-cell setup for in situ X-ray investigations[J]. Journal of the Electrochemical Society, 2016, 163(10): H906-H912. |
31 | NONG H N, REIER T, OH H S, et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts[J]. Nature Catalysis, 2018, 1(11): 841-851. |
32 | REKSTEN A H, RUSSELL A E, RICHARDSON P W, et al. An in situ XAS study of high surface-area IrO2 produced by the polymeric precursor synthesis[J]. Physical Chemistry Chemical Physics, 2020, 22(34): 18868-18881. |
33 | LI T, SENESI A J, LEE B. Small angle X-ray scattering for nanoparticle research[J]. Chemical Reviews, 2016, 116(18): 11128-11180. |
34 | GORYACHEV A, CARLÀ F, DRNEC J, et al. Synchrotron based operando surface X-ray scattering study towards structure-activity relationships of model electrocatalysts[J]. ChemistrySelect, 2016, 1(5): 1104-1108. |
35 | HARLOW G S, LUNDGREN E, ESCUDERO-ESCRIBANO M. Recent advances in surface X-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis[J]. Current Opinion in Electrochemistry, 2020, 23: 162-173. |
36 | MASUDA T, KONDO T. New sights into the electrochemical interface provided by in situ X-ray absorption fine structure and surface X-ray scattering[J]. Current Opinion in Electrochemistry, 2019, 14: 81-88. |
37 | FENG J H, KRIECHBAUM M, LIU L E. In situ capabilities of Small Angle X-ray Scattering[J]. Nanotechnology Reviews, 2019, 8(1): 352-369. |
38 | CORNELIUS T W, THOMAS O. Progress of in situ synchrotron X-ray diffraction studies on the mechanical behavior of materials at small scales[J]. Progress in Materials Science, 2018, 94: 384-434. |
39 | PFEIFER V, JONES T E, VELASCO VÉLEZ J J, et al. The electronic structure of iridium and its oxides[J]. Surface and Interface Analysis, 2016, 48(5): 261-273. |
40 | RAO R R, KOLB M J, HALCK N B, et al. Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution[J]. Energy & Environmental Science, 2017, 10(12): 2626-2637. |
41 | RAO R R, KOLB M J, GIORDANO L, et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces[J]. Nature Catalysis, 2020, 3(6): 516-525. |
42 | GUERRERO-PÉREZ M O, PATIENCE G S. Experimental methods in chemical engineering: Fourier transform infrared spectroscopy-FTIR[J]. The Canadian Journal of Chemical Engineering, 2020, 98(1): 25-33. |
43 | WANG H, ZHOU Y W, CAI W B. Recent applications of in situ ATR-IR spectroscopy in interfacial electrochemistry[J]. Current Opinion in Electrochemistry, 2017, 1(1): 73-79. |
44 | CHEN W, YU A, SUN Z J, et al. Probing complex eletrocatalytic reactions using electrochemical infrared spectroscopy[J]. Current Opinion in Electrochemistry, 2019, 14: 113-123. |
45 | BIEBERLE-HÜTTER A, BRONNEBERG A C, GEORGE K, et al. Operando attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy for water splitting[J]. Journal of Physics D: Applied Physics, 2021, 54(13): 133001. |
46 | YAO Y C, HU S L, CHEN W X, et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis[J]. Nature Catalysis, 2019, 2(4): 304-313. |
47 | NAYAK S, MCPHERSON I J, VINCENT K A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy[J]. Angewandte Chemie International Edition, 2018, 57(39): 12855-12858. |
48 | SU H, ZHAO X, CHENG W R, et al. Hetero-N-coordinated co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in an acidic medium[J]. ACS Energy Letters, 2019, 4(8): 1816-1822. |
49 | ZHAO X, SU H, CHENG W R, et al. Operando insight into the oxygen evolution kinetics on the metal-free carbon-based electrocatalyst in an acidic solution[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34854-34861. |
50 | CAO L, LUO Q, CHEN J, et al. Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction[J]. Nature Communications, 2019, 10(1): 4849. |
51 | HESS C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions[J]. Chemical Society Reviews, 2021, 50(5): 3519-3564. |
52 | ZHANG H, DUAN S, RADJENOVIC P M, et al. Core-shell nanostructure-enhanced Raman spectroscopy for surface catalysis[J]. Accounts of Chemical Research, 2020, 53(4): 729-739. |
53 | WANG X T, GUO L. SERS activity of semiconductors: Crystalline and amorphous nanomaterials[J]. Angewandte Chemie International Edition, 2020, 59(11): 4231-4239. |
54 | ZOU S Z, CHAN H Y H, WILLIAMS C T, et al. Formation and stability of oxide films on platinum-group metals in electrochemical and related environments as probed by surface-enhanced Raman spectroscopy: Dependence on the chemical oxidant[J]. Langmuir, 2000, 16(2): 754-763. |
55 | YEO B S, KLAUS S L, ROSS P N, et al. Identification of hydroperoxy species as reaction intermediates in the electrochemical evolution of oxygen on gold[J]. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 2010, 11(9): 1854-1857. |
56 | DIAZ-MORALES O, CALLE-VALLEJO F, DE MUNCK C, et al. Electrochemical water splitting by gold: Evidence for an oxide decomposition mechanism[J]. Chemical Science, 2013, 4(6): 2334-2343. |
57 | YANG S X, HETTERSCHEID D G H. Redefinition of the active species and the mechanism of the oxygen evolution reaction on gold oxide[J]. ACS Catalysis, 2020, 10(21): 12582-12589. |
58 | SHAN J, YE C, CHEN S, et al. Short-range ordered iridium single atoms integrated into cobalt oxide spinel structure for highly efficient electrocatalytic water oxidation[J]. Journal of the American Chemical Society, 2021, 143(13): 5201-5211. |
59 | KASIAN O, GEIGER S, MAYRHOFER K J J, et al. Electrochemical on-line ICP-MS in electrocatalysis research[J]. Chemical Record (New York), 2019, 19(10): 2130-2142. |
60 | SPÖRI C, KWAN J T H, BONAKDARPOUR A, et al. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation[J]. Angewandte Chemie (International Ed in English), 2017, 56(22): 5994-6021. |
61 | TOPALOV A A, KATSOUNAROS I, AUINGER M, et al. Dissolution of platinum: Limits for the deployment of electrochemical energy conversion?[J]. Angew Chem Int Ed Engl, 2012, 51(50): 12613-12615. |
62 | CHEREVKO S, ZERADJANIN A R, TOPALOV A A, et al. Dissolution of noble metals during oxygen evolution in acidic media[J]. ChemCatChem, 2014, 6(8): 2219-2223. |
63 | TOPALOV A A, CHEREVKO S, ZERADJANIN A R, et al. Towards a comprehensive understanding of platinum dissolution in acidic media[J]. Chemical Science, 2014, 5(2): 631-638. |
64 | HODNIK N, JOVANOVIČ P, PAVLIŠIČ A, et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media[J]. The Journal of Physical Chemistry C, 2015, 119(18): 10140-10147. |
65 | KIM Y T, LOPES P P, PARK S A, et al. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts[J]. Nature Communications, 2017, 8(1): 1449. |
66 | LOPES P P, STRMCNIK D, TRIPKOVIC D, et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments[J]. ACS Catalysis, 2016, 6(4): 2536-2544. |
67 | GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515. |
68 | LU J, HUA X, LONG Y T. Recent advances in real-time and in situ analysis of an electrode-electrolyte interface by mass spectrometry[J]. The Analyst, 2017, 142(5): 691-699. |
69 | ABD-EL-LATIF A A, BONDUE C J, ERNST S, et al. Insights into electrochemical reactions by differential electrochemical mass spectrometry[J]. TrAC Trends in Analytical Chemistry, 2015, 70: 4-13. |
70 | CHURCHILL C R, HIBBERT D B. Kinetics of the electrochemical evolution of isotopically enriched gases. Part 1.—18O16O evolution on platinum in acid and alkaline solution[J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1982, 78(10): 2937. |
71 | WILLSAU J, WOLTER O, HEITBAUM J. Does the oxide layer take part in the oxygen evolution reaction on platinum?: A DEMS study[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 195(2): 299-306. |
72 | WOHLFAHRT-MEHRENS M, HEITBAUM J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 237(2): 251-260. |
73 | MACOUNOVA K, MAKAROVA M, KRTIL P. Oxygen evolution on nanocrystalline RuO2 and Ru0.9Ni0.1O2-δ electrodes-DEMS approach to reaction mechanism determination[J]. Electrochemistry Communications, 2009, 11(10): 1865-1868. |
74 | STOERZINGER K A, DIAZ-MORALES O, KOLB M, et al. Orientation-dependent oxygen evolution on RuO2 without lattice exchange[J]. ACS Energy Letters, 2017, 2(4): 876-881. |
75 | KASIAN O, GEIGER S, LI T, et al. Degradation of iridium oxides via oxygen evolution from the lattice: Correlating atomic scale structure with reaction mechanisms[J]. Energy & Environmental Science, 2019, 12(12): 3548-3555. |
76 | ZHANG L, WANG L, WEN Y, et al. Boosting neutral water oxidation through surface oxygen modulation[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(31): e2002297. |
77 | WANG C, WANG Z Y, KE W. Application of the quartz crystal microbalance technique in corrosion research[J]. International Journal of Corrosion and Scale Inhibition, 2020, 9(1): doi:10.17675/2305-6894-2020-9-1-6. |
78 | YANG Y, XIONG Y, ZENG R, et al. Operando methods in electrocatalysis[J]. ACS Catalysis, 2021, 11(3): 1136-1178. |
79 | SHPIGEL N, LEVI M D, SIGALOV S, et al. In situ real-time mechanical and morphological characterization of electrodes for electrochemical energy storage and conversion by electrochemical quartz crystal microbalance with dissipation monitoring[J]. Accounts of Chemical Research, 2018, 51(1): 69-79. |
80 | ŁUKASZEWSKI M, CZERWIŃSKI A. Dissolution of noble metals and their alloys studied by electrochemical quartz crystal microbalance[J]. Journal of Electroanalytical Chemistry, 2006, 589(1): 38-45. |
81 | OWE L E, TSYPKIN M, SUNDE S. The effect of phosphate on iridium oxide electrochemistry[J]. Electrochimica Acta, 2011, 58: 231-237. |
82 | FRYDENDAL R, PAOLI E A, KNUDSEN B P, et al. Benchmarking the stability of oxygen evolution reaction catalysts: The importance of monitoring mass losses[J]. ChemElectroChem, 2014, 1(12): 2075-2081. |
83 | ESCUDERO-ESCRIBANO M, PEDERSEN A F, PAOLI E A, et al. Importance of surface IrOx in stabilizing RuO2 for oxygen evolution[J]. The Journal of Physical Chemistry B, 2018, 122(2): 947-955. |
[1] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[2] | 吕思奇, 李娜, 陈浩森, 焦树强, 宋维力. 电池电极过程可视化与定量化技术的研究进展[J]. 储能科学与技术, 2022, 11(3): 795-817. |
[3] | 李志浩, 彭浩, 陈亚琴. 质子交换膜燃料电池膜电极组件温度分布的神经网络预测模型[J]. 储能科学与技术, 2021, 10(6): 2053-2059. |
[4] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[5] | 陈曦, 贺凌轩, 刘芹孝, 方叶, 龙施淳, 万忠民. 动态工况下车用燃料电池系统热力学分析[J]. 储能科学与技术, 2021, 10(4): 1416-1422. |
[6] | 张敬, 卢雁, 李圣, 谢光彩, 万忠民. 基于模糊PID控制的家用燃料电池热电联供系统建模与仿真[J]. 储能科学与技术, 2021, 10(3): 1117-1126. |
[7] | 翟俊香, 何广利, 许壮, 刘聪敏. 空冷型质子交换膜燃料电池系统效率的实验研究[J]. 储能科学与技术, 2020, 9(6): 1885-1889. |
[8] | 裴冯来. 典型30 kW级质子交换膜燃料电池发动机性能测评对比研究[J]. 储能科学与技术, 2018, 7(3): 519-523. |
[9] | 朱晓舟,陈民武,刘湘东,赵航飞,韩明. 空冷型PEMFC阳极排气方法实验研究[J]. 储能科学与技术, 2018, 7(1): 118-. |
[10] | 朱晓舟,陈民武,刘湘东,赵航飞,韩明. 基于LabVIEW的PEMFC单电池电压巡检系统设计[J]. 储能科学与技术, 2018, 7(1): 123-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||