1 |
PARK J H, JUNG C H, KIM K J, et al. Enhancing bifunctional electrocatalytic activities of oxygen electrodes via incorporating highly conductive Sm3+ and Nd3+ double-doped ceria for reversible solid oxide cells[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2496-2506.
|
2 |
ZHANG W W, WANG H C, GUAN K, et al. Enhanced anode performance and coking resistance by in situ exsolved multiple-twinned co-Fe nanoparticles for solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 461-473.
|
3 |
TONG X F, OVTAR S, BRODERSEN K, et al. A 4 × 4 cm2 nanoengineered solid oxide electrolysis cell for efficient and durable hydrogen production[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 25996-26004.
|
4 |
MALZBENDER J, STEINBRECH R W, SINGHEISER L. A review of advanced techniques for characterising SOFC behaviour[J]. Fuel Cells, 2009, 9(6): 785-793.
|
5 |
WACHSMAN E D, LEE K T. Lowering the temperature of solid oxide fuel cells[J]. Science, 2011, 334(6058): 935-939.
|
6 |
NESARAJ A. S. Recent developments in solid oxide fuel cell technology-A review[J]. Journal of Scientific & Industrial Research, 2010, 69(3): 169-176.
|
7 |
ZHANG Y, CHEN B, GUAN D, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849): 246-251.
|
8 |
JI Q Q, BI L, ZHANG J T, et al. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction[J]. Energy & Environmental Science, 2020, 13(5): 1408-1428.
|
9 |
YOO S, JUN A, JU Y W, et al. Development of double-perovskite compounds as cathode materials for low-temperature solid oxide fuel cells[J]. Angewandte Chemie International Edition, 2014, 53(48): 13064-13067.
|
10 |
KIEBACH R, ZHANG W W, ZHANG W, et al. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation[J]. Journal of Power Sources, 2015, 283: 151-161.
|
11 |
BONTURIM E, MAZZOCCHI V L, PARENTE C B R, et al. Oxygen stoichiometry of Ba0.50Sr0.50Co0.80Fe0.20O3-δ obtained by EDTA-citrate method and measured by X-ray and neutron diffraction[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(3): 769-773.
|
12 |
DAI N N, WANG Z H, LOU Z L, et al. One-step synthesis of high performance Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 composite cathode for intermediate-temperature solid oxide fuel cells using a self-combustion technique[J]. Journal of Power Sources, 2012, 217: 519-523.
|
13 |
ZHANG L M, YANG S Y, ZHANG S Z. A novel perovskite oxychloride as a high performance cathode for protonic ceramic fuel cells[J]. Journal of Power Sources, 2019, 440: 227125.
|
14 |
DAI N N, FENG J, WANG Z H, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs[J]. Journal of Materials Chemistry A, 2013, 1(45): 14147-14153.
|
15 |
ZHEN S Y, SUN W, TANG G Z, et al. Evaluation of strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides as intermediate temperature solid oxide fuel cell cathodes[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9538-9546.
|
16 |
NI W J, ZHU T L, CHEN X Y, et al. Stable, efficient and cost-competitive Ni-substituted Sr(Ti, Fe)O3 cathode for solid oxide fuel cell: Effect of A-site deficiency[J]. Journal of Power Sources, 2020, 451: 227762.
|
17 |
YANG G Q, FENG J, SUN W, et al. The characteristic of strontium-site deficient perovskites SrxFe1.5Mo0.5O6-δ (x = 1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes[J]. Journal of Power Sources, 2014, 268: 771-777.
|
18 |
FENG J, QIAO J S, WANG W Y, et al. Development and performance of anode material based on A-site deficient Sr2-xFe1.4Ni0.1Mo0.5O6-δ perovskites for solid oxide fuel cells[J]. Electrochimica Acta, 2016, 215: 592-599.
|
19 |
BIAN L Z, WANG L J, CHEN N, et al. Enhanced performance of La0.7Sr0.3Fe0.9Ni0.1O3 cathode by partial substitution with Ce[J]. Ceramics International, 2017, 43(1): 982-987.
|
20 |
GOU Y J, LI G D, REN R Z, et al. Pr-doping motivating the phase transformation of the BaFeO3-δ perovskite as a high-performance solid oxide fuel cell cathode[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20174-20184.
|
21 |
DEKA D J, KIM J, GUNDUZ S, et al. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system[J]. Applied Catalysis A: General, 2020, 602: 117697.
|
22 |
TAI L W, NASRALLAH M M, ANDERSON H U, et al. Structure and electrical properties of La1-xSrxCo1-yFeyO3. Part 1. The system La0.8Sr0.2Co1-yFeyO3[J]. Solid State Ionics, 1995, 76(3/4): 259-271.
|
23 |
ZHAO H L, XU N S, CHENG Y F, et al. Investigation of mixed conductor BaCo0.7Fe0.3-xYxO3-δ with high oxygen permeability[J]. The Journal of Physical Chemistry C, 2010, 114(41): 17975-17981.
|
24 |
BARBUCCI A, VIVIANI M, PANIZZA M, et al. Analysis of the oxygen reduction process on SOFC composite electrodes[J]. Journal of Applied Electrochemistry, 2005, 35(4): 399-403.
|
25 |
PERRY MURRAY E, SEVER M J, BARNETT S A. Electrochemical performance of (La, Sr)(co, Fe)O3-(Ce, Gd)O3 composite cathodes[J]. Solid State Ionics, 2002, 148(1/2): 27-34.
|
26 |
YI S, SHEN Y N, ZHAO H L, et al. Electrochemical performance of La1.5Sr0.5Ni1-xFexO4+δ cathode for IT-SOFCs[J]. Electrochimica Acta, 2016, 219: 394-400.
|
27 |
SIEBERT E, HAMMOUCHE A, KLEITZ M. Impedance spectroscopy analysis of La1-xSritxMnO3-yttria-stabilized zirconia electrode kinetics[J]. Electrochimica Acta, 1995, 40(11): 1741-1753.
|
28 |
BIAN L Z, DUAN C C, WANG L J, et al. Electrochemical performance and stability of La0·5Sr0·5Fe0·9Nb0·1O3-δ symmetric electrode for solid oxide fuel cells[J]. Journal of Power Sources, 2018, 399: 398-405.
|
29 |
SHEN L Y, DU Z H, ZHANG Y, et al. Medium-Entropy perovskites Sr(FeαTiβCoγMnζ)O3-δ as promising cathodes for intermediate temperature solid oxide fuel cell[J]. Applied Catalysis B: Environmental, 2021, 295: 120264.
|
30 |
KIM J D, KIM G D, MOON J W, et al. Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy[J]. Solid State Ionics, 2001, 143(3/4): 379-389.
|
31 |
ADLER S B. Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes[J]. Solid State Ionics, 1998, 111(1/2): 125-134.
|
32 |
BAUMANN F S, FLEIG J, HABERMEIER H U, et al. Impedance spectroscopic study on well-defined (La, Sr)(Co, Fe)O3-δ model electrodes[J]. Solid State Ionics, 2006, 177(11/12): 1071-1081.
|
33 |
LI Q, XIA T, SUN L P, et al. Electrochemical performance of novel cobalt-free perovskite SrFe0.7Cu0.3O3-δ cathode for intermediate temperature solid oxide fuel cells[J]. Electrochimica Acta, 2014, 150: 151-156.
|