储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1977-1986.doi: 10.19799/j.cnki.2095-4239.2021.0359
吴玉玺(), 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永(), 杨乃涛
收稿日期:
2021-07-19
修回日期:
2021-08-02
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
吴玉玺(1996—),男,硕士研究生,研究方向为固体氧化物燃料电池,E-mail:基金资助:
Yuxi WU(), Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU(), Naitao YANG
Received:
2021-07-19
Revised:
2021-08-02
Online:
2021-11-05
Published:
2021-11-03
摘要:
直接碳固体氧化物燃料电池(direct carbon solid oxide fuel cells,DC-SOFCs)是一种能够将固体碳中的化学能直接转化为电能的新型能量转换装置,具有理论效率高、燃料来源广泛、成本低以及绿色环保等突出优势。根据DC-SOFC的工作原理,其运行过程是一个动力学控制步骤,即阳极侧CO的电化学氧化反应与碳燃料中逆向Boudouard反应的有效耦合保证了DC-SOFC的高效稳定运行。其中,速率相对较慢的逆向Boudouard反应是电池电化学性能的决定因素。因此,设计提高逆向Boudouard反应速率是促进DC-SOFC产业化进程的有效途径,也是发展趋势。国内外研究者采取了一系列措施来实现此目标,其中最简单有效的两种方法是:①在固体碳燃料中担载逆向Boudouard反应催化剂;②直接采用多孔结构且天然富含金属元素的生物质炭为燃料。基于近年来的前沿研究,本文综述了采用不同类型逆向Boudouard反应催化剂和碳燃料的DC-SOFCs最新研究进展,系统总结了DC-SOFCs的研究现状、面临的挑战和未来发展方向,以期为开发高性能、长寿命DC-SOFCs提供有价值的参考。
中图分类号:
吴玉玺, 韩婷婷, 解子恒, 李琳, 宋艳雯, 梁加仓, 张津津, 于方永, 杨乃涛. 直接碳固体氧化物燃料电池研究进展:碳燃料和逆向Boudouard反应催化剂[J]. 储能科学与技术, 2021, 10(6): 1977-1986.
Yuxi WU, Tingting HAN, Ziheng XIE, Lin LI, Yanwen SONG, Jiacang LIANG, Jinjin ZHANG, Fangyong YU, Naitao YANG. Recent progress in direct carbon solid oxide fuel cells: Carbon fuels and reverse Boudouard reaction catalysts[J]. Energy Storage Science and Technology, 2021, 10(6): 1977-1986.
1 | JIANG C, MA J, CORRE G, et al. Challenges in developing direct carbon fuel cells[J]. Chemical Society Reviews, 2017, 46(10): 2889-2912. |
2 | GÜR T M. Critical review of carbon conversion in "carbon fuel cells"[J]. Chemical Reviews, 2013, 113(8): 6179-6206. |
3 | CAO D X, SUN Y, WANG G L. Direct carbon fuel cell: Fundamentals and recent developments[J]. Journal of Power Sources, 2007, 167(2): 250-257. |
4 | AHN S Y, EOM S Y, RHIE Y H, et al. Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system[J]. Applied Energy, 2013, 105: 207-216. |
5 | LI C G, YI H, LEE D. On-demand supply of slurry fuels to a porous anode of a direct carbon fuel cell: Attempts to increase fuel-anode contact and realize long-term operation[J]. Journal of Power Sources, 2016, 309: 99-107. |
6 | KACPRZAK A, KOBYLECKI R, BIS Z. Influence of temperature and composition of NaOH-KOH and NaOH-LiOH electrolytes on the performance of a direct carbon fuel cell[J]. Journal of Power Sources, 2013, 239: 409-414. |
7 | ZECEVIC S, PATTON E M, PARHAMI P. Direct electrochemical power generation from carbon in fuel cells with molten hydroxide electrolyte[J]. Chemical Engineering Communications, 2005, 192(12): 1655-1670. |
8 | JAYAKUMAR A, KÜNGAS R, ROY S, et al. A direct carbon fuel cell with a molten antimony anode[J]. Energy & Environmental Science, 2011, 4(10): 4133-4137. |
9 | RADY A C, GIDDEY S, KULKARNI A, et al. Direct carbon fuel cell operation on brown coal[J]. Applied Energy, 2014, 120: 56-64. |
10 | YU X K, SHI Y X, WANG H J, et al. Using potassium catalytic gasification to improve the performance of solid oxide direct carbon fuel cells: Experimental characterization and elementary reaction modeling[J]. Journal of Power Sources, 2014, 252: 130-137. |
11 | LIU J, ZHOU M Y, ZHANG Y P, et al. Electrochemical oxidation of carbon at high temperature: Principles and applications[J]. Energy & Fuels, 2018, 32(4): 4107-4117. |
12 | NAKAGAWA N, ISHIDA M. Performance of an internal direct-oxidation carbon fuel cell and its evaluation by graphic exergy analysis[J]. Industrial & Engineering Chemistry Research, 1988, 27(7): 1181-1185. |
13 | XIE Y M, XIAO J, LIU Q S, et al. Highly efficient utilization of walnut shell biochar through a facile designed portable direct carbon solid oxide fuel cell stack[J]. Energy, 2021, 227: 120456. |
14 | BAI Y H, LIU Y, TANG Y B, et al. Direct carbon solid oxide fuel Cell—a potential high performance battery[J]. International Journal of Hydrogen Energy, 2011, 36(15): 9189-9194. |
15 | XIE Y M, TANG Y B, LIU J. A verification of the reaction mechanism of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2013, 17(1): 121-127. |
16 | XIE Y M, CAI W Z, XIAO J, et al. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells[J]. Journal of Power Sources, 2015, 277: 1-8. |
17 | XU H R, CHEN B, ZHANG H C, et al. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction[J]. Journal of Power Sources, 2018, 382: 135-143. |
18 | 刘江, 刘燕, 唐玉宝, 等. 一种直接碳固体氧化物燃料电池电源系统: CN102130354A[P]. 2011-07-20. |
LIU J, LIU Y, TANG Y B, et al. Direct carbon solid oxide fuel cell power system: CN102130354A[P]. 2011-07-20. | |
19 | WANG X Q, LIU J, XIE Y M, et al. A high performance direct carbon solid oxide fuel cell stack for portable applications[J]. 物理化学学报, 2017, 33(8): 1614-1620. |
WANG X Q, LIU J, XIE Y M, et al. A high performance direct carbon solid oxide fuel cell stack for portable applications[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1614-1620. | |
20 | CAI W Z, LIU J, LIU P P, et al. A direct carbon solid oxide fuel cell fueled with char from wheat straw[J]. International Journal of Energy Research, 2019, 43(7): 2468-2477. |
21 | ZHU X B, LI Y Q, LÜ Z. Continuous conversion of biomass wastes in a La0.75Sr0.25Cr0.5Mn0.5O3-δ based carbon-air battery[J]. International Journal of Hydrogen Energy, 2016, 41(9): 5057-5062. |
22 | CAI W Z, ZHOU Q, XIE Y M, et al. A direct carbon solid oxide fuel cell operated on a plant derived biofuel with natural catalyst[J]. Applied Energy, 2016, 179: 1232-1241. |
23 | CAI W Z, LIU J, YU F Y, et al. A high performance direct carbon solid oxide fuel cell fueled by Ca-loaded activated carbon[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21167-21176. |
24 | TANG H Q, YU F Y, WANG Y S, et al. Enhancing the power output of direct carbon solid oxide fuel cell using Ba-loaded activated carbon fuel[J]. Energy Technology, 2019, 7(4): 1800885. |
25 | YU F Y, HAN T T, WANG Y S, et al. Performance improvement of a direct carbon solid oxide fuel cell via strontium-catalyzed carbon gasification[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23368-23377. |
26 | JIAO Y, TIAN W J, CHEN H L, et al. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance[J]. Applied Energy, 2015, 141: 200-208. |
27 | ZHANG L, XIAO J, XIE Y M, et al. Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2014, 608: 272-277. |
28 | XIE Y, TANG Y, LIU J. An Al2O3-doped YSZ electrolyte-supporting solid oxide fuel cell fabricated by dip-coating and its direct operation on carbon fuel[J]. ECS Transactions, 2013, 57(1): 3039-3048. |
29 | YU F Y, XIAO J, LEI L B, et al. Effects of doping alumina on the electrical and sintering performances of yttrium-stabilized-zirconia[J]. Solid State Ionics, 2016, 289: 28-34. |
30 | CHEN Q Y, QIU Q Y, YAN X M, et al. A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application[J]. Applied Energy, 2020, 278: 115657. |
31 | YAN X M, ZHOU M Y, ZHANG Y P, et al. An all-solid-state carbon-air battery reaching an output power over 10 W and a specific energy of 3600 W·h/kg[J]. Chemical Engineering Journal, 2021, 404: 127057. |
32 | CAI W Z, LIU J, XIE Y M, et al. An investigation on the kinetics of direct carbon solid oxide fuel cells[J]. Journal of Solid State Electrochemistry, 2016, 20(8): 2207-2216. |
33 | 刘江, 颜晓敏. 直接碳固体氧化物燃料电池[J]. 电化学, 2020, 26(2): 175-189. |
LIU J, YAN X M. Direct carbon solid oxide fuel cells[J]. Journal of Electrochemistry, 2020, 26(2): 175-189. | |
34 | TANG Y B, LIU J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11188-11193. |
35 | CAI W Z, ZHOU Q, XIE Y M, et al. A facile method of preparing Fe-loaded activated carbon fuel for direct carbon solid oxide fuel cells[J]. Fuel, 2015, 159: 887-893. |
36 | WU H, XIAO J, ZENG X Y, et al. A high performance direct carbon solid oxide fuel cell-A green pathway for brown coal utilization[J]. Applied Energy, 2019, 248: 679-687. |
37 | 谢永敏, 王晓强, 刘江, 等. 管式电解质支撑型直接碳固体氧化物燃料电池的浸渍法制备及电性能[J]. 物理化学学报, 2017, 33(2): 386-392. |
XIE Y M, WANG X Q, LIU J, et al. Fabrication and performance of tubular electrolyte-supporting direct carbon solid oxide fuel cell by dip coating technique[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 386-392. | |
38 | WANG W, LIU Z J, ZHANG Y P, et al. A direct carbon solid oxide fuel cell stack on a single electrolyte plate fabricated by tape casting technique[J]. Journal of Alloys and Compounds, 2019, 794: 294-302. |
39 | ZHOU M Y, WANG X Q, ZHANG Y P, et al. Effect of counter diffusion of CO and CO2 between carbon and anode on the performance of direct carbon solid oxide fuel cells[J]. Solid State Ionics, 2019, 343: 115127. |
40 | YU F Y, ZHANG Y P, YU L, et al. All-solid-state direct carbon fuel cells with thin yttrium-stabilized-zirconia electrolyte supported on nickel and iron bimetal-based anodes[J]. International Journal of Hydrogen Energy, 2016, 41(21): 9048-9058. |
41 | XIAO J, HAN D, YU F Y, et al. Characterization of symmetrical SrFe0.75Mo0.25O3-δ electrodes in direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2016, 688: 939-945. |
42 | ZHOU Q, CAI W Z, ZHANG Y P, et al. Electricity generation from corn cob char though a direct carbon solid oxide fuel cell[J]. Biomass and Bioenergy, 2016, 91: 250-258. |
43 | AN W T, SUN X J, JIAO Y, et al. A solid oxide carbon fuel cell operating on pomelo peel char with high power output[J]. International Journal of Energy Research, 2019, 43(7): 2514-2526. |
44 | WU Y Z, SU C, ZHANG C M, et al. A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction[J]. Electrochemistry Communications, 2009, 11(6): 1265-1268. |
45 | CAI W Z, CAO D, ZHOU M Y, et al. Sulfur-tolerant Fe-doped La0.3Sr0.7TiO3 perovskite as anode of direct carbon solid oxide fuel cells[J]. Energy, 2020, 211: 118958. |
46 | LI C, SHI Y X, CAI N S. Performance improvement of direct carbon fuel cell by introducing catalytic gasification process[J]. Journal of Power Sources, 2010, 195(15): 4660-4666. |
47 | KULKARNI A, GIDDEY S, BADWAL S P S, et al. Electrochemical performance of direct carbon fuel cells with titanate anodes[J]. Electrochimica Acta, 2014, 121: 34-43. |
48 | SUN K N, LIU J, FENG J, et al. Investigation of B-site doped perovskites Sr2Fe1.4X0.1Mo0.5O6-δ (X=Bi, Al, Mg) as high-performance anodes for hybrid direct carbon fuel cell[J]. Journal of Power Sources, 2017, 365: 109-116. |
49 | XIE Y M, LU Z B, MA C C, et al. High-performance gas-electricity cogeneration using a direct carbon solid oxide fuel cell fueled by biochar derived from camellia oleifera shells[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29322-29330. |
50 | ZHU Z Y, ZENG X Y, WU H, et al. Green energy application technology of litchi pericarp-derived carbon material with high performance[J]. Journal of Cleaner Production, 2021, 286: 124960. |
51 | YU F Y, WANG Y S, XIE Y J, et al. A microtubular direct carbon solid oxide fuel cell operated on the biochar derived from pepper straw[J]. Energy Technology, 2020, 8(3): 1901077. |
52 | KULKARNI A, GIDDEY S, BADWAL S P S. Yttria-doped ceria anode for carbon-fueled solid oxide fuel cell[J]. Journal of Solid State Electrochemistry, 2015, 19(2): 325-335. |
53 | MUNNINGS C, KULKARNI A, GIDDEY S, et al. Biomass to power conversion in a direct carbon fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(23): 12377-12385. |
54 | QIU Q Y, ZHOU M Y, CAI W Z, et al. A comparative investigation on direct carbon solid oxide fuel cells operated with fuels of biochar derived from wheat straw, corncob, and bagasse[J]. Biomass and Bioenergy, 2019, 121: 56-63. |
55 | DUDEK M, ADAMCZYK B, SITARZ M, et al. The usefulness of walnut shells as waste biomass fuels in direct carbon solid oxide fuel cells[J]. Biomass and Bioenergy, 2018, 119: 144-154. |
56 | WU H, XIAO J, HAO S R, et al. In-situ catalytic gasification of kelp-derived biochar as a fuel for direct carbon solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2021, 865: 158922. |
57 | KAKLIDIS N, KYRIAKOU V, GARAGOUNIS I, et al. Effect of carbon type on the performance of a direct or hybrid carbon solid oxide fuel cell[J]. RSC Advances, 2014, 4(36): 18792-18800. |
58 | LI J W, WEI B, WANG C Q, et al. High-performance and stable La0.8Sr0.2Fe0.9Nb0.1O3-δanode for direct carbon solid oxide fuel cells fueled by activated carbon and corn straw derived carbon[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12358-12367. |
[1] | 刘长洋, 卞刘振, 郜建全, 彭继华, 彭军, 安胜利. 固体氧化物燃料电池La0.7Sr0.3Fe0.9Ni0.1O3-δ 对称电极的电化学性能[J]. 储能科学与技术, 2022, 11(7): 2059-2065. |
[2] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性实验[J]. 储能科学与技术, 2022, 11(5): 1314-1321. |
[3] | 田辉, 华栋, 曼茂立, 刘春哲, 李国君, 张兄文. 板式固体氧化物燃料电池积碳特性的数值研究[J]. 储能科学与技术, 2022, 11(1): 291-296. |
[4] | 李萍萍, 陈姗姗, 赵璐璐, 史明亮, 黄岩, 李初福. 整体煤气化固体氧化物燃料电池并网测试系统设计[J]. 储能科学与技术, 2021, 10(6): 2039-2045. |
[5] | 韩婷婷, 吴玉玺, 解子恒, 孟秀霞, 张津津, 解玉姣, 于方永, 杨乃涛. 固体氧化物燃料电池镍基阳极积碳机理及性能提升策略研究进展[J]. 储能科学与技术, 2021, 10(6): 1931-1942. |
[6] | 韦守李, 李希超, 常修亮, 陈兵, 许卓, 张涛, 郑莉莉, 戴作强. 固体氧化物燃料电池双极板材料发展综述[J]. 储能科学与技术, 2021, 10(6): 1943-1951. |
[7] | 练文超, 雷励斌, 梁波, 王超, 魏磊, 田志鹏, 刘建平, 杨华政, 梁家健, 施涛. 质子导体固体氧化物电化学装置中氨的利用与合成[J]. 储能科学与技术, 2021, 10(6): 1998-2007. |
[8] | 郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962. |
[9] | 于旺, 孙超, 齐冀, 卞刘振, 彭继华, 彭军, 安胜利. 固体氧化物电池Sr2-xFe1.5Mo0.5O6-δ氧电极材料的电化学性能[J]. 储能科学与技术, 2021, 10(6): 2020-2027. |
[10] | 董旭, 杜志鸿, 张旸, 李科云, 赵海雷. 固体氧化物燃料电池高催化活性阴极材料SrFeF x O3- x - δ [J]. 储能科学与技术, 2020, 9(2): 415-424. |
[11] | 吕泽伟,韩敏芳. 光伏、光热联合SOC制氢、发电系统设计[J]. 储能科学与技术, 2017, 6(2): 275-279. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||