储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1963-1976.doi: 10.19799/j.cnki.2095-4239.2021.0122
收稿日期:
2021-03-23
修回日期:
2021-06-07
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
何峰(2000—),男,本科生,研究方向为电催化与电合成,E-mail:基金资助:
Feng HE(), Jingjing ZHANG, Yijun CHEN, Jian ZHANG(), Deli WANG()
Received:
2021-03-23
Revised:
2021-06-07
Online:
2021-11-05
Published:
2021-11-03
摘要:
电化学氧还原反应(ORR)合成H2O2是一种低成本、无污染的绿色合成方法。但是,ORR动力学缓慢,存在四电子ORR生成H2O的竞争反应,因此需要使用催化剂提升ORR的反应活性以及二电子ORR的选择性。近年来,碳基材料因价格便宜、来源广泛、调控方法多样,被广泛应用于该领域。本文首先简要介绍了电催化ORR合成H2O2的机理,并根据机理分析了影响电化学合成H2O2催化性能的关键因素。接着阐述了提升碳基ORR催化剂活性与二电子选择性的策略,并着重介绍了非金属原子掺杂碳材料和过渡金属氮碳材料。最后,总结了碳基催化剂在电化学合成H2O2中存在的问题和面临的挑战,对碳基催化剂在电合成H2O2中应用的发展趋势进行了展望。
中图分类号:
何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976.
Feng HE, Jingjing ZHANG, Yijun CHEN, Jian ZHANG, Deli WANG. Recent progress on carbon-based catalysts for electrochemical synthesis of H2O2 via oxygen reduction reaction[J]. Energy Storage Science and Technology, 2021, 10(6): 1963-1976.
1 | YANG S, VERDAGUER-CASADEVALL A, ARNARSON L, et al. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis[J]. ACS Catalysis, 2018, 8(5): 4064-4081. |
2 | ZHANG B S, XU W W, LU Z Y, et al. Recent progress on carbonaceous material engineering for electrochemical hydrogen peroxide generation[J]. Transactions of Tianjin University, 2020, 26(3): 188-196. |
3 | CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process[J]. Angewandte Chemie International Edition, 2006, 45(42): 6962-6984. |
4 | ZHOU W, MENG X X, GAO J H, et al. Hydrogen peroxide generation from O2 electroreduction for environmental remediation: A state-of-the-art review[J]. Chemosphere, 2019, 225: 588-607. |
5 | 陈坤, 袁颂东. 双氧水绿色合成工艺的研究进展[J]. 化学与生物工程, 2006, 23(7): 1-3. |
CHEN K, YUAN S D. Research of the green synthesis process for hydrogen peroxide[J]. Chemistry & Bioengineering, 2006, 23(7): 1-3. | |
6 | YI Y H, WANG L, LI G, et al. A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: Noble-metal catalytic method, fuel-cell method and plasma method[J]. Catalysis Science & Technology, 2016, 6(6): 1593-1610. |
7 | 胡长诚. 国外用过氧化氢环氧化丙烯制环氧丙烷研发近况[J]. 化学推进剂与高分子材料, 2006, 4(2): 1-5, 10. |
HU C C. Foreign recent status of research and development on preparation of propylene oxide by epoxidation of propylene with hydrogen peroxide[J]. Chemical Propellants & Polymeric Materials, 2006, 4(2): 1-5, 10. | |
8 | CHUNG T H, MESHREF M N A, HAI F I, et al. Microbial electrochemical systems for hydrogen peroxide synthesis: Critical review of process optimization, prospective environmental applications, and challenges[J]. Bioresource Technology, 2020, 313: https://core.ac.uk/display/343451114. |
9 | JIANG Y Y, NI P J, CHEN C X, et al. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry[J]. Advanced Energy Materials, 2018, 8(31): doi: 10.1002/adma. 201801909. |
10 | SONG J, CHO S. Catalytic materials for efficient electrochemical production of hydrogen peroxide[J]. APL Materials, 2020, 8(5): doi: 10.1063/5.0002845. |
11 | LEE S, CHUNG Y M. An efficient Pd/C catalyst design based on sequential ligand exchange method for the direct synthesis of H2O2[J]. Materials Letters, 2019, 234: 58-61. |
12 | TIAN P F, DING D D, SUN Y, et al. Theoretical study of size effects on the direct synthesis of hydrogen peroxide over palladium catalysts[J]. Journal of Catalysis, 2019, 369: 95-104. |
13 | PUTHIARAJ P, YU K, AHN W S, et al. Pd nanoparticles on a dual acid-functionalized porous polymer for direct synthesis of H2O2: Contribution by enhanced H2 storage capacity[J]. Journal of Industrial and Engineering Chemistry, 2020, 81: 375-384. |
14 | TERANISHI M, KUNIMOTO T, NAYA S I, et al. Visible-light-driven hydrogen peroxide synthesis by a hybrid photocatalyst consisting of bismuth vanadate and bis(hexafluoroacetylacetonato)copper(II) complex[J]. The Journal of Physical Chemistry C, 2020, 124(6): 3715-3721. |
15 | XU Q, ZHAO P, SHI Y K, et al. Preparation of a g-C3N4/Co3O4/Ag2O ternary heterojunction nanocomposite and its photocatalytic activity and mechanism[J]. New Journal of Chemistry, 2020, 44(16): 6261-6268. |
16 | ZHANG P, TONG Y W, LIU Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride[J]. Angewandte Chemie International Edition, 2020, 59(37): 16209-16217. |
17 | KO Y J, CHOI K, YANG B, et al. A catalyst design for selective electrochemical reactions: Direct production of hydrogen peroxide in advanced electrochemical oxidation[J]. Journal of Materials Chemistry A, 2020, 8(19): 9859-9870. |
18 | SONG X, LI N, ZHANG H, et al. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17519-17527. |
19 | TANG C, JIAO Y, SHI B, et al. Coordination tunes selectivity: Two-electron oxygen reduction on high-loading molybdenum single-atom catalysts[J]. Angewandte Chemie International Edition, 2020, 59(23): 9171-9176. |
20 | JUNG E, SHIN H, HOOCH ANTINK W, et al. Correction to "recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design"[J]. ACS Energy Letters, 2020, 5(6): doi: 10.1021/acsenergylett.0c01151. |
21 | WANG Y, WANG D, LI Y. A fundamental comprehension and recent progress in advanced Pt-based ORR nanocatalysts[J]. SmartMat, 2021, 2(1): 56-75. |
22 | CHOI C H, KWON H C, YOOK S, et al. Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface[J]. The Journal of Physical Chemistry C, 2014, 118(51): 30063-30070. |
23 | CHOI C H, KIM M, KWON H C, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst[J]. Nature Communications, 2016, 7: 10922-10931. |
24 | LEDENDECKER M, PIZZUTILO E, MALTA G, et al. Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis[J]. ACS Catalysis, 2020, 10(10): 5928-5938. |
25 | FORTUNATO G V, PIZZUTILO E, MINGERS A M, et al. Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide[J]. The Journal of Physical Chemistry C, 2018, 122(28): 15878-15885. |
26 | LEE S, CHUNG Y M. Direct synthesis of H2O2 over acid-treated Pd/C catalyst derived from a Pd-Co core-shell structure[J]. Catalysis Today, 2020, 352: 270-278. |
27 | PIZZUTILO E, KASIAN O, CHOI C H, et al. Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production[J]. Chemical Physics Letters, 2017, 683: 436-442. |
28 | SIAHROSTAMI S, VERDAGUER-CASADEVALL A, KARAMAD M, et al. Enabling direct H2O2 production through rational electrocatalyst design[J]. Nature Materials, 2013, 12(12): 1137-1143. |
29 | 杨子凤, 焦芮, 张万里, 等. 燃料电池阴极氧还原非铂类催化剂研究进展[J]. 化工新型材料, 2019, 47(11): 227-231. |
YANG Z F, JIAO R, ZHANG W L, et al. Research progress of cathodic oxygen reduction non-platinum catalyst for fuel cell[J]. New Chemical Materials, 2019, 47(11): 227-231. | |
30 | WANG Q, SHAN G L, SUN-WATERHOUSE D, et al. Engineering local coordination environments and site densities for high-performance Fe-N-C oxygen reduction reaction electrocatalysis[J]. SmartMat, 2021, 2(2): 154-175. |
31 | WANG X, VASILEFF A, JIAO Y, et al. Electronic and structural engineering of carbon-based metal-free electrocatalysts for water splitting[J]. Advanced Materials, 2019, 31(13): doi: 10.1002/adma.201803625. |
32 | VISWANATHAN V, HANSEN H A, ROSSMEISL J, et al. Unifying the 2e- and 4e- reduction of oxygen on metal surfaces[J]. The Journal of Physical Chemistry Letters, 2012, 3(20): 2948-2951. |
33 | ZHANG J Y, ZHANG H C, CHENG M J, et al. Tailoring the electrochemical production of H2O2: Strategies for the rational design of high-performance electrocatalysts[J]. Small, 2020, 16(15): doi: 10.1002/smll.201902845. |
34 | GUO X Y, LIN S R, GU J X, et al. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts[J]. ACS Catalysis, 2019, 9(12): 11042-11054. |
35 | KIM J H, KIM Y T, JOO S H. Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active site atoms[J]. Current Opinion in Electrochemistry, 2020, 21: 109-116. |
36 | JIANG K, ZHAO J J, WANG H T. Catalyst design for electrochemical oxygen reduction toward hydrogen peroxide[J]. Advanced Functional Materials, 2020, 30(35): doi: 10.1002/adfm.202003321. |
37 | 吴越, 杨向光. 现代催化原理[M]. 北京: 科学出版社, 2005. |
WU Y, YANG X G. Principles of modern catalysis[M]. Beijing: Science Press, 2005. | |
38 | OLOMAN C, WATKINSON A P. Hydrogen peroxide production in trickle-bed electrochemical reactors[J]. Journal of Applied Electrochemistry, 1979, 9(1): 117-123. |
39 | LEE Y H, LI F, CHANG K H, et al. Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2[J]. Applied Catalysis B: Environmental, 2012, 126: 208-214. |
40 | ZHU Y S, QIU S, MA F, et al. Melamine-derived carbon electrode for efficient H2O2 electro-generation[J]. Electrochimica Acta, 2018, 261: 375-383. |
41 | LU Z Y, CHEN G X, SIAHROSTAMI S, et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials[J]. Nature Catalysis, 2018, 1(2): 156-162. |
42 | XIA Y, SHANG H, ZHANG Q G, et al. Electrogeneration of hydrogen peroxide using phosphorus-doped carbon nanotubes gas diffusion electrodes and its application in electro-Fenton[J]. Journal of Electroanalytical Chemistry, 2019, 840: 400-408. |
43 | JUNG E, SHIN H, LEE B H, et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production[J]. Nature Materials, 2020, 19(4): 436-442. |
44 | ZHANG J C, YANG H B, GAO J J, et al. Design of hierarchical, three-dimensional free-standing single-atom electrode for H2O2 production in acidic media[J]. Carbon Energy, 2020, 2(2): 276-282. |
45 | SUN Y, SILVIOLI L, SAHRAIE N R, et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts[J]. Journal of the American Chemical Society, 2019, 141(31): 12372-12381. |
46 | SUK M, CHUNG M W, HAN M H, et al. Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts[J]. Catalysis Today, 2021, 359: 99-105. |
47 | SA Y J, KIM J H, JOO S H. Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production[J]. Angewandte Chemie International Edition, 2019, 58(4): 1100-1105. |
48 | LIU Y, ZHANG J S, HE S Q, et al. Defect engineering of single-walled carbon nanohorns for stable electrochemical synthesis of hydrogen peroxide with high selectivity in neutral electrolytes[J]. Journal of Energy Chemistry, 2021, 54: 118-123. |
49 | SAN ROMAN D, KRISHNAMURTHY D, GARG R, et al. Engineering three-dimensional (3D) out-of-plane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis[J]. ACS Catalysis, 2020, 10(3): 1993-2008. |
50 | FORTI J C, ROCHA R S, LANZA M R V, et al. Electrochemical synthesis of hydrogen peroxide on oxygen-fed graphite/PTFE electrodes modified by 2-ethylanthraquinone[J]. Journal of Electroanalytical Chemistry, 2007, 601(1/2): 63-67. |
51 | BABAEI-SATI R, BASIRI PARSA J. Electrogeneration of H2O2 using graphite cathode modified with electrochemically synthesized polypyrrole/MWCNT nanocomposite for electro-Fenton process[J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 270-276. |
52 | VALIM R B, REIS R M, CASTRO P S, et al. Electrogeneration of hydrogen peroxide in gas diffusion electrodes modified with tert-butyl-anthraquinone on carbon black support[J]. Carbon, 2013, 61: 236-244. |
53 | XIAO X, WANG T J, BAI J, et al. Enhancing the selectivity of H2O2 electrogeneration by steric hindrance effect[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42534-42541. |
54 | YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration[J]. Electrochimica Acta, 2015, 163: 182-189. |
55 | HASANZADEH A, KHATAEE A, ZAREI M, et al. Two-electron oxygen reduction on fullerene C60-carbon nanotubes covalent hybrid as a metal-free electrocatalyst[J]. Scientific Reports, 2019, 9: 13780-13793. |
56 | YANG W L, ZHOU M H, CAI J J, et al. Ultrahigh yield of hydrogen peroxide on graphite felt cathode modified with electrochemically exfoliated graphene[J]. Journal of Materials Chemistry A, 2017, 5(17): 8070-8080. |
57 | SUN Y Y, SINEV I, JU W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis, 2018, 8(4): 2844-2856. |
58 | ZHANG J Y, ZHANG G, JIN S Y, et al. Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction[J]. Carbon, 2020, 163: 154-161. |
59 | LI L Q, TANG C, ZHENG Y, et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic-nitrogen-carbon[J]. Advanced Energy Materials, 2020, 10(21): doi: 10.1002/aenm.202000789. |
60 | ZHU J Y, XIAO X, ZHENG K, et al. KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction[J]. Carbon, 2019, 153: 6-11. |
61 | ZHAO K, SU Y, QUAN X, et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon[J]. Journal of Catalysis, 2018, 357: 118-126. |
62 | JIA N, YANG T, SHI S F, et al. N, F-codoped carbon nanocages: An efficient electrocatalyst for hydrogen peroxide electroproduction in alkaline and acidic solutions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2883-2891. |
63 | ZHAO H, SHEN X, CHEN Y, et al. A COOH-terminated nitrogen-doped carbon aerogel as a bulk electrode for completely selective two-electron oxygen reduction to H2O2[J]. Chemical Communications, 2019, 55(44): 6173-6176. |
64 | ZHANG C, ZHANG J, ZHANG J, et al. Tuning coal into graphene-like manocarbon for electrochemical H2O2 production with nearly 100% faraday efficiency[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(28): 9369-9375. |
65 | LI B Q, ZHAO C X, LIU J N, et al. Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic CO-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts[J]. Advanced Materials, 2019, 31(35): doi: 10.1002/adma.201808173. |
66 | GAO J J, YANG H B, HUANG X, et al. Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst[J]. Chem, 2020, 6(3): 658-674. |
67 | ZHANG Q R, TAN X, BEDFORD N M, et al. Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production[J]. Nature Communications, 2020, 11: 4181-4191. |
68 | JIANG K, BACK S, AKEY A J, et al. Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination[J]. Nature Communications, 2019, 10(1): 3997-4008. |
69 | 钟国玉, 王红娟, 余皓, 等. 氧还原碳基非贵金属电催化剂研究进展[J]. 化学学报, 2017, 75(10): 943-966. |
ZHONG G Y, WANG H J, YU H, et al. A review of carbon-based non-noble catalysts for oxygen reduction reaction[J]. Acta Chimica Sinica, 2017, 75(10): 943-966. | |
70 | HE W, WANG Y, JIANG C, et al. Structural effects of a carbon matrix in non-precious metal O2- reduction electrocatalysts[J]. Chemical Society Reviews, 2016, 45(9): 2396-2409. |
71 | GONG K, DU F, XIA Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. |
72 | SUN Y, LI S, JOVANOV Z P, et al. Structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production[J]. ChemSusChem, 2018, 11(19): 3388-3395. |
73 | RAO C V, CABRERA C R, ISHIKAWA Y. In search of the active site in nitrogen-doped carbon nanotube electrodes for the oxygen reduction reaction[J]. The Journal of Physical Chemistry Letters, 2010, 1(18): 2622-2627. |
74 | GUO D, SHIBUYA R, AKIBA C, et al. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271): 361-365. |
75 | IGLESIAS D, GIULIANI A, MELCHIONNA M, et al. N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2[J]. Chem, 2018, 4(1): 106-123. |
76 | 陈旭, 何大平, 木士春. 掺氮石墨烯研究[J]. 化学进展, 2013, 25(8): 1292-1301. |
CHEN X, HE D P, MU S C. Nitrogen-doped graphene[J]. Progress in Chemistry, 2013, 25(8): 1292-1301. | |
77 | BI Z H, KONG Q Q, CAO Y F, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: A review[J]. Journal of Materials Chemistry A, 2019, 7(27): 16028-16045. |
78 | ZHANG F P, LIU L, CHEN L, et al. A cellulose dissolution and encapsulation strategy to prepare carbon nanospheres with ultra-small size and high nitrogen content for the oxygen reduction reaction[J]. New Journal of Chemistry, 2020, 44(25): 10613-10620. |
79 | YANG Y R, HE F, SHEN Y F, et al. A biomass derived N/C-catalyst for the electrochemical production of hydrogen peroxide[J]. Chemical Communications, 2017, 53(72): 9994-9997. |
80 | LIAO M J, WANG Y L, LI S S, et al. Electrocatalyst derived from abundant biomass and its excellent activity for in situ H2O2 production[J]. ChemElectroChem, 2019, 6(18): 4877-4884. |
81 | MIAO J, ZHU H, TANG Y, et al. Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water[J]. Chemical Engineering Journal, 2014, 250: 312-318. |
82 | LU X Y, WANG D, WU K H, et al. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites[J]. Journal of Colloid and Interface Science, 2020, 573: 376-383. |
83 | KIM H W, ROSS M B, KORNIENKO N, et al. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts[J]. Nature Catalysis, 2018, 1(4): 282-290. |
84 | HONDA K, WAKI Y, MATSUMOTO A, et al. Amorphous carbon having higher catalytic activity toward oxygen reduction reaction: Quinone and carboxy groups introduced onto its surface[J]. Diamond and Related Materials, 2020, 107: doi: 10.1016/j.diamond.2020.107900. |
85 | KIM H W, PARK H, ROH J S, et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction[J]. Chemistry of Materials, 2019, 31(11): 3967-3973. |
86 | KIM H W, BUKAS V J, PARK H, et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide[J]. ACS Catalysis, 2020, 10(1): 852-863. |
87 | CHEN S, CHEN Z, SIAHROSTAMI S, et al. Designing boron nitride Islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society, 2018, 140(25): 7851-7859. |
88 | TANG C, CHEN L, LI H J, et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres[J]. Journal of the American Chemical Society, 2021, 143(20): 7819-7827. |
89 | SMITH P T, KIM Y, BENKE B P, et al. Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide[J]. Angewandte Chemie International Edition, 2020, 59(12): 4902-4907. |
90 | GU J, HSU C S, BAI L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094. |
91 | ZHU C Z, FU S F, SONG J H, et al. Self-assembled Fe-N-doped carbon nanotube aerogels with single-atom catalyst feature as high-efficiency oxygen reduction electrocatalysts[J]. Small, 2017, 13(15): doi: 10.1002/smll.201603407. |
92 | HE Y, GUO H, HWANG S, et al. Single cobalt sites dispersed in hierarchically porous nanofiber networks for durable and high-power PGM-free cathodes in fuel cells[J]. Advanced Materials, 2020, 32(46): doi: 10.1002/adma.202003577. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 邹文午, 蒋国星, 杜丽. 共价有机框架材料(COFs)在氧电极电催化中的研究进展[J]. 储能科学与技术, 2021, 10(6): 1891-1905. |
[3] | 宋乃建, 郭明媛, 南皓雄, 喻嘉. 过渡金属基催化剂用于氧析出反应的研究进展[J]. 储能科学与技术, 2021, 10(6): 1906-1917. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||