储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1891-1905.doi: 10.19799/j.cnki.2095-4239.2021.0401
收稿日期:
2021-08-03
修回日期:
2021-08-05
出版日期:
2021-11-05
发布日期:
2021-11-03
通讯作者:
杜丽
E-mail:cezouww@mail.scut.edu.cn;duli@scut.edu.cn
作者简介:
邹文午(1998—),男,硕士研究生,主要研究共价有机框架的设计合成及其在电化学中的研究,E-mail:基金资助:
Wenwu ZOU(), Guoxing JIANG, Li DU()
Received:
2021-08-03
Revised:
2021-08-05
Online:
2021-11-05
Published:
2021-11-03
Contact:
Li DU
E-mail:cezouww@mail.scut.edu.cn;duli@scut.edu.cn
摘要:
在碳达峰、碳中和的目标之下,燃料电池、金属-空气电池、电解水等清洁能源技术提高了能源利用率,在未来将成为新的能源消费方式。氧还原反应(ORR)、氧析出反应(OER)因其缓慢的动力学过程而导致此类清洁能源技术的发展受到阻碍。贵金属催化剂虽被认为是最高效的催化剂,但其成本高、稳定性低,寻找非贵金属催化剂已成为相关研究的趋势。共价有机框架材料(COFs)作为一类新兴的材料,由有机单体通过特殊的共价键连接而成,因其具有可调控的结构、低密度、高稳定性、较大比表面积等独特的优点,通过合理的设计策略,将其应用于电催化剂的研究在近年来逐步兴起。本文回顾了近期适用于ORR、OER及ORR/OER双功能电催化的二维COFs(2D COFs)材料,主要介绍了以纯COFs作为电催化剂、COFs与其他材料形成复合结构、COFs热解碳化等策略制备高效电催化剂,并从分子设计及电子调控等层面上梳理了上述策略对电催化活性中心的形成或电催化活性提升的原因,对当前存在的问题提出总结,以期在今后的研究中起到一定借鉴意义。
中图分类号:
邹文午, 蒋国星, 杜丽. 共价有机框架材料(COFs)在氧电极电催化中的研究进展[J]. 储能科学与技术, 2021, 10(6): 1891-1905.
Wenwu ZOU, Guoxing JIANG, Li DU. Recent advances in covalent organic frameworks (COFs) for electrocatalysis of oxygen electrodes[J]. Energy Storage Science and Technology, 2021, 10(6): 1891-1905.
1 | SHAO M, CHANG Q, DODELET J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chemical Reviews, 2016, 116(6): 3594-3657. |
2 | SEH Z W, KIBSGAARD J, DICKENS C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998. DOI:10.1126/science.aad4998. |
3 | ZHENG J F, ZHANG W F, ZHANG J X, et al. Recent advances in nanostructured transition metal nitrides for fuel cells[J]. Journal of Materials Chemistry A, 2020, 8(40): 20803-20818. |
4 | ZHAO C X, LIU J N, WANG J, et al. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts[J]. Chemical Society Reviews, 2021, 50(13): 7745-7778. |
5 | PENG P, ZHOU Z H, GUO J N, et al. Well-defined 2D covalent organic polymers for energy electrocatalysis[J]. ACS Energy Letters, 2017, 2(6): 1308-1314. |
6 | GENG K, HE T, LIU R, et al. Covalent organic frameworks: Design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
7 | COTE A P. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
8 | CHEN X Y, GENG K Y, LIU R Y, et al. Covalent organic frameworks: Chemical approaches to designer structures and built-in functions[J]. Angewandte Chemie International Edition, 2020, 59(13): 5050-5091. |
9 | ZHAO X, PACHFULE P, THOMAS A. Covalent organic frameworks (COFs) for electrochemical applications[J]. Chemical Society Reviews, 2021, 50(12): 6871-6913. |
10 | DIERCKS C S, YAGHI O M. The atom, the molecule, and the covalent organic framework[J]. Science, 2017, 355(6328): eaal1585. |
11 | SHARMA R K, YADAV P, YADAV M, et al. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications[J]. Materials Horizons, 2020, 7(2): 411-454. |
12 | HU C G, DAI L M. Doping of carbon materials for metal-free electrocatalysis[J]. Advanced Materials, 2019, 31(7): 1804672. |
13 | JIA Y, ZHANG L Z, DU A J, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials (Deerfield Beach, Fla), 2016, 28(43): 9532-9538. |
14 | TANG C, ZHANG Q. Nanocarbon for oxygen reduction electrocatalysis: Dopants, edges, and defects[J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(13): doi:10.1002/adma.201604103. |
15 | LI D H, JIA Y, CHANG G J, et al. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte[J]. Chem, 2018, 4(10): 2345-2356. |
16 | QUÍLEZ-BERMEJO J, MORALLÓN E, CAZORLA-AMORÓS D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms[J]. Carbon, 2020, 165: 434-454. |
17 | JI W Y, WANG T X, DING X S, et al. Porphyrin- and phthalocyanine-based porous organic polymers: From synthesis to application[J]. Coordination Chemistry Reviews, 2021, 439: 213875. |
18 | LIAO Z J, WANG Y L, WANG Q L, et al. Bimetal-phthalocyanine based covalent organic polymers for highly efficient oxygen electrode[J]. Applied Catalysis B: Environmental, 2019, 243: 204-211. |
19 | WANG M C, WANG M, LIN H H, et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping[J]. Journal of the American Chemical Society, 2020, 142(52): 21622-21627. |
20 | JIA H X, SUN Z J, JIANG D C, et al. Covalent cobalt porphyrin framework on multiwalled carbon nanotubes for efficient water oxidation at low overpotential[J]. Chemistry of Materials, 2015, 27(13): 4586-4593. |
21 | SUN B, LIU J, CAO A, et al. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance[J]. Chemical Communications, 2017, 53(47): 6303-6306. |
22 | JARIWALA D, MARKS T J, HERSAM M C. Mixed-dimensional van der Waals heterostructures[J]. Nature Materials, 2017, 16(2): 170-181. |
23 | CHEN X D, ZHANG H, CI C G, et al. Few-layered boronic ester based covalent organic frameworks/carbon nanotube composites for high-performance K-organic batteries[J]. ACS Nano, 2019, 13(3): 3600-3607. |
24 | IWASE K, NAKANISHI S, MIYAYAMA M, et al. Rational molecular design of electrocatalysts based on single-atom modified covalent organic frameworks for efficient oxygen reduction reaction[J]. ACS Applied Energy Materials, 2020, 3(2): 1644-1652. |
25 | WANG J, WANG J R, QI S Y, et al. Stable multifunctional single-atom catalysts resulting from the synergistic effect of anchored transition-metal atoms and host covalent-organic frameworks[J]. The Journal of Physical Chemistry C, 2020, 124(32): 17675-17683. |
26 | ZHAI L P, YANG S, YANG X B, et al. Conjugated covalent organic frameworks as platinum nanoparticle supports for catalyzing the oxygen reduction reaction[J]. Chemistry of Materials, 2020, 32(22): 9747-9752. |
27 | XIANG Z H, CAO D P, HUANG L, et al. Nitrogen-doped holey graphitic carbon from 2D covalent organic polymers for oxygen reduction[J]. Advanced Materials, 2014, 26(20): 3315-3320. |
28 | GE X M, SUMBOJA A, WUU D, et al. Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts[J]. ACS Catalysis, 2015, 5(8): 4643-4667. |
29 | ZHU X F, HU C G, AMAL R, et al. Heteroatom-doped carbon catalysts for zinc-air batteries: Progress, mechanism, and opportunities[J]. Energy & Environmental Science, 2020, 13(12): 4536-4563. |
30 | YU L, PAN X L, CAO X M, et al. Oxygen reduction reaction mechanism on nitrogen-doped graphene: A density functional theory study[J]. Journal of Catalysis, 2011, 282(1): 183-190. |
31 | WANG Y W, QIU W J, SONG E H, et al. Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications[J]. National Science Review, 2018, 5(3): 327-341. |
32 | LI D, LI C, ZHANG L, et al. Metal-free thiophene-sulfur covalent organic frameworks: Precise and controllable synthesis of catalytic active sites for oxygen reduction[J]. Journal of the American Chemical Society, 2020, 142(18): 8104-8108. |
33 | WU S, LI M, PHAN H, et al. Toward two-dimensional π-conjugated covalent organic radical frameworks[J]. Angewandte Chemie, 2018, 57(27): 8007-8011. |
34 | GUO J N, LIN C Y, XIA Z H, et al. A pyrolysis-free covalent organic polymer for oxygen reduction[J]. Angewandte Chemie International Edition, 2018, 57(38): 12567-12572. |
35 | CHEN S, ZHENG Y, ZHANG B, et al. Cobalt, nitrogen-doped porous carbon nanosheet-assembled flowers from metal-coordinated covalent organic polymers for efficient oxygen reduction[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1384-1393. |
36 | ZHANG S H, XIA W, YANG Q, et al. Core-shell motif construction: Highly graphitic nitrogen-doped porous carbon electrocatalysts using MOF-derived carbon@COF heterostructures as sacrificial templates[J]. Chemical Engineering Journal, 2020, 396: 125154. |
37 | LIN Q P, BU X H, KONG A G, et al. Heterometal-embedded organic conjugate frameworks from alternating monomeric iron and cobalt metalloporphyrins and their application in design of porous carbon catalysts[J]. Advanced Materials, 2015, 27(22): 3431-3436. |
38 | PACHFULE P, DHAVALE V M, KANDAMBETH S, et al. Porous-organic-framework-templated nitrogen-rich porous carbon as a more proficient electrocatalyst than Pt/C for the electrochemical reduction of oxygen[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2013, 19(3): 974-980. |
39 | ZHAO X J, PACHFULE P, LI S, et al. Silica-templated covalent organic framework-derived Fe-N-doped mesoporous carbon as oxygen reduction electrocatalyst[J]. Chemistry of Materials, 2019, 31(9): 3274-3280. |
40 | LI Z, ZHAO W, YIN C, et al. Synergistic effects between doped nitrogen and phosphorus in metal-free cathode for zinc-air battery from covalent organic frameworks coated CNT[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44519-44528. |
41 | WEI S, WANG Y, CHEN W, et al. Atomically dispersed Fe atoms anchored on COF-derived N-doped carbon nanospheres as efficient multi-functional catalysts[J]. Chemical Science, 2019, 11(3): 786-790. |
42 | XU Q, TANG Y, ZHANG X, et al. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction[J]. Advanced Materials, 2018, 30(15): e1706330. |
43 | KAMIYA K, KAMAI R, HASHIMOTO K, et al. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts[J]. Nature Communications, 2014, 5: 5040. |
44 | BIAN G, YIN J, ZHU J. Recent advances on conductive 2D covalent organic frameworks[J]. Small, 2021, 17(22): 2006043. |
45 | WANG J, ZHONG H X, QIN Y L, et al. An efficient three-dimensional oxygen evolution electrode[J]. Angewandte Chemie, 2013, 52(20): 5248-5253. |
46 | SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. |
47 | SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365. |
48 | GOPI S, KATHIRESAN M. 1, 4-Phenylenediamine based covalent triazine framework as an electro catalyst[J]. Polymer, 2017, 109: 315-320. |
49 | MONDAL S, MOHANTY B, NURHUDA M, et al. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction[J]. ACS Catalysis, 2020, 10(10): 5623-5630. |
50 | AIYAPPA H B, THOTE J, SHINDE D B, et al. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst[J]. Chemistry of Materials, 2016, 28(12): 4375-4379. |
51 | MULLANGI D, DHAVALE V, SHALINI S, et al. Low-overpotential electrocatalytic water splitting with noble-metal-free nanoparticles supported in a sp3N-rich flexible COF[J]. Advanced Energy Materials, 2016, 6(13): 1600110. |
52 | ZHAO X, PACHFULE P, LI S, et al. Macro/microporous covalent organic frameworks for efficient electrocatalysis[J]. Journal of the American Chemical Society, 2019, 141(16): 6623-6630. |
53 | NANDI S, SINGH S K, MULLANGI D, et al. Low band gap benzimidazole COF supported Ni3N as highly active OER catalyst[J]. Advanced Energy Materials, 2016, 6(24): 1601189. |
54 | ZHUANG G L, GAO Y F, ZHOU X, et al. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries[J]. Chemical Engineering Journal, 2017, 330: 1255-1264. |
55 | FAN X H, KONG F T, KONG A G, et al. Covalent porphyrin framework-derived Fe2P@Fe4N-coupled nanoparticles embedded in N-doped carbons as efficient trifunctional electrocatalysts[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32840-32850. |
56 | GAO Z, YU Z W, HUANG Y X, et al. Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity[J]. Journal of Materials Chemistry A, 2020, 8(12): 5907-5912. |
57 | GAO Z, GONG L L, HE X Q, et al. General strategy to fabricate metal-incorporated pyrolysis-free covalent organic framework for efficient oxygen evolution reaction[J]. Inorganic Chemistry, 2020, 59(7): 4995-5003. |
58 | YANG C, YANG Z-D, DONG H, et al. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER[J]. ACS Energy Letters, 2019, 4(9): 2251-2258. |
59 | JIA H X, YAO Y C, GAO Y Y, et al. Pyrolyzed cobalt porphyrin-based conjugated mesoporous polymers as bifunctional catalysts for hydrogen production and oxygen evolution in water[J]. Chemical Communications (Cambridge, England), 2016, 52(92): 13483-13486. |
60 | DEY S, MONDAL B, CHATTERJEE S, et al. Molecular electrocatalysts for the oxygen reduction reaction[J]. Nature Reviews Chemistry, 2017, 1: 0098. |
61 | FU J, LIANG R, LIU G, et al. Recent progress in electrically rechargeable zinc-air batteries[J]. Advanced Materials, 2019, 31(31): e1805230. |
62 | APPEL A M, HELM M L. Determining the overpotential for a molecular electrocatalyst[J]. ACS Catalysis, 2014, 4(2): 630-633. |
63 | KONG F T, FAN X H, KONG A G, et al. Covalent phenanthroline framework derived FeS@Fe3C composite nanoparticles embedding in N-S-codoped carbons as highly efficient trifunctional electrocatalysts[J]. Advanced Functional Materials, 2018, 28(51): 1803973. |
64 | PARK J H, LEE C H, JU J M, et al. Bifunctional covalent organic framework-derived electrocatalysts with modulated p-band centers for rechargeable Zn-air batteries[J]. Advanced Functional Materials, 2021, 31(25): 2101727. |
65 | LIU C, LIU F, LI H, et al. One-dimensional van der waals heterostructures as efficient metal-free oxygen electrocatalysts[J]. ACS Nano, 2021, 15(2): 3309-3319. |
66 | ZHANG H, QU Z, TANG H M, et al. On-chip integration of a covalent organic framework-based catalyst into a miniaturized Zn-air battery with high energy density[J]. ACS Energy Letters, 2021, 6(7): 2491-2498. |
67 | LIN X X, PENG P, GUO J N, et al. Reaction milling for scalable synthesis of N, P-codoped covalent organic polymers for metal-free bifunctional electrocatalysts[J]. Chemical Engineering Journal, 2019, 358: 427-434. |
68 | LI B Q, ZHANG S Y, CHEN X, et al. Framework porphyrins: One-pot synthesis of framework porphyrin materials and their applications in bifunctional oxygen electrocatalysis[J]. Advanced Functional Materials, 2019, 29(29): 1970198. |
[1] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
[2] | 陈健鑫, 盛楠, 朱春宇, 饶中浩. 生物质碳负载镍基纳米颗粒及其电解水析氢性能[J]. 储能科学与技术, 2022, 11(5): 1350-1357. |
[3] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[4] | 张申智, 王立开, 孙迎港, 吕恒, 杨子寅, 李磊磊, 李忠芳. 二维碳载Au4Pd2催化剂的构建及其电催化性能[J]. 储能科学与技术, 2021, 10(6): 2028-2038. |
[5] | 张诗诗, 秦棪阳, 苏亚琼. 析氢反应中氮掺杂石墨烯负载金属单/双原子催化活性起源[J]. 储能科学与技术, 2021, 10(6): 2008-2012. |
[6] | 宋乃建, 郭明媛, 南皓雄, 喻嘉. 过渡金属基催化剂用于氧析出反应的研究进展[J]. 储能科学与技术, 2021, 10(6): 1906-1917. |
[7] | 李月霞, 刘全兵. MXene基纳米材料在氧还原电催化中的应用[J]. 储能科学与技术, 2021, 10(6): 1918-1930. |
[8] | 何峰, 张静静, 陈奕君, 张建, 王得丽. 电化学氧还原反应合成H2O2碳基催化剂研究进展[J]. 储能科学与技术, 2021, 10(6): 1963-1976. |
[9] | 朱子岳, 符冬菊, 陈建军, 曾燮榕. 锌空气电池非贵金属双功能阴极催化剂研究进展[J]. 储能科学与技术, 2020, 9(5): 1489-1496. |
[10] | 黄俊,彭章泉. 锂-氧电池在几个关键科学问题上的最新进展[J]. 储能科学与技术, 2018, 7(2): 167-174. |
[11] | 许 可,王保国. 锌-空气电池空气电极研究进展[J]. 储能科学与技术, 2017, 6(5): 924-940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||