1 |
ZHANG H B, LIU G G, SHI L, et al. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis[J]. Advanced Energy Materials, 2018, 8(1): 1701343.
|
2 |
YANG S, KIM J, TAK Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie International Edition, 2016, 55(6): 2058-2062.
|
3 |
XU H, WANG D, YANG P, et al. A theoretical study of atomically dispersed MN4/C (M=Fe or Mn) as a high-activity catalyst for the oxygen reduction reaction[J]. Physical Chemistry Chemical Physics, 2020, 22(48): 28297-28303.
|
4 |
ZHAO J, CHEN Z. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study[J]. Journal of the American Chemical Society, 2017, 139(36): 12480-12487.
|
5 |
WANG D W, LI Q, HAN C, et al. Single-atom ruthenium based catalyst for enhanced hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 249: 91-97.
|
6 |
LIU X H, ZHENG L R, HAN C X, et al. Identifying the activity origin of a cobalt single-atom catalyst for hydrogen evolution using supervised learning[J]. Advanced Functional Materials, 2021, 31(18): 2100547.
|
7 |
CHEN Y J, JI S F, CHEN C, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264.
|
8 |
CHENG N, STAMBULA S, WANG D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: 13638.
|
9 |
LEI C J, WANG Y, HOU Y, et al. Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics[J]. Energy & Environmental Science, 2019, 12(1): 149-156.
|
10 |
CHEN Z W, YAN J M, JIANG Q. Single or double: Which is the altar of atomic catalysts for nitrogen reduction reaction?[J]. Small Methods, 2019, 3(6): 1800291.
|
11 |
ZHANG N, ZHOU T P, GE J K, et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction[J]. Matter, 2020, 3(2): 509-521.
|
12 |
ROSSMEISL J, LOGADOTTIR A, NØRSKOV J K. Electrolysis of water on (oxidized) metal surfaces[J]. Chemical Physics, 2005, 319(1/2/3): 178-184.
|
13 |
LI Y C, LIU X F, ZHENG L R, et al. Preparation of Fe-N-C catalysts with FeNx (x=1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2019, 7(45): 26147-26153.
|
14 |
LAURSEN A B, KEGNÆS S, DAHL S, et al. Molybdenum sulfides—Efficient and viable materials for electro-and photoelectrocatalytic hydrogen evolution[J]. Energy & Environmental Science, 2012, 5(2): 5577-5591.
|
15 |
NØRSKOV J K, BLIGAARD T, LOGADOTTIR A, et al. Trends in the exchange current for hydrogen evolution[J]. Journal of the Electrochemical Society, 2005, 152(3): J23.
|
16 |
FEI H, DONG J, ARELLANO-JIMÉNEZ M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6: 8668.
|