储能科学与技术 ›› 2022, Vol. 11 ›› Issue (3): 921-928.doi: 10.19799/j.cnki.2095-4239.2022.0046

• 储能新材料设计与先进表征专刊 • 上一篇    下一篇

多尺度模拟研究固体电解质界面

于沛平(), 许亮, 麻冰云, 孙钦涛, 杨昊, 刘越(), 程涛()   

  1. 苏州大学功能纳米与软物质研究院,江苏 苏州 152123
  • 收稿日期:2022-01-25 修回日期:2022-02-14 出版日期:2022-03-05 发布日期:2022-03-11
  • 通讯作者: 刘越,程涛 E-mail:ppyu@stu.suda.edu.cn;yliu1992@suda.edu.cn;tcheng@suda.edu.cn
  • 作者简介:于沛平(1997—),男,博士研究生,主要研究方向为能源的多尺度理论模拟,E-mail:ppyu@stu.suda.edu.cn
  • 基金资助:
    国家自然科学基金项目(21903058)

Multiscale simulation of a solid electrolyte interphase

Peiping YU(), Liang XU, Bingyun MA, Qintao SUN, Hao YANG, Yue LIU(), Tao CHENG()   

  1. Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 152123, Jiangsu, China
  • Received:2022-01-25 Revised:2022-02-14 Online:2022-03-05 Published:2022-03-11
  • Contact: Yue LIU,Tao CHENG E-mail:ppyu@stu.suda.edu.cn;yliu1992@suda.edu.cn;tcheng@suda.edu.cn

摘要:

固体电解质界面(solid electrolyte interphase,SEI)是电池中“最重要也是最不被理解”的部分。可控合成性能优异的SEI是实现高能量密度电池的关键技术之一。但是,由于SEI的形成过程涉及到多个时间和空间尺度,并且涉及到多场耦合,导致SEI结构异常复杂。现有实验表征手段无法精确解析其微观结构和形成机制。近年来,高速发展的多尺度理论模拟,为理解和解析SEI结构提供了强有力的新手段。本文总结了近年来针对SEI研究发展出来的关键模拟技术,重点关注微-介观(<100 nm)尺度的理论模拟方法,特别是可以用于电化学模拟的量子化学方法、可用于大尺度化学反应模拟的反应力场方法以及数据驱动的机器学习模型等。这些新技术可以有效地解决传统模拟方法中存在的准确性低、时间尺度短以及空间尺度有限等问题,在可以预见的将来,在研究SEI形成的初始反应、动态演化以及功能预测等方面将发挥越来越重要的作用。随着计算机硬件水平的不断提升、理论模拟算法的稳步提高,多尺度理论模拟将为高能量密度电池的理论设计和智能制造提供强有力的理论基础。

关键词: 密度泛函理论, 反应力场, 分子动力学模拟, 蒙特卡罗模拟, 第一性原理分子动力学

Abstract:

The solid electrolyte interphase is a critical but little understood part of a battery. Robust solid electrolyte interphase is the key component to facilitate high-energy-density batteries. However, due to the solid electrolyte interface's complexity, its experimental characterization and structural resolution are extremely challenging. Recently, atomic level multiscale simulations have provided new tools for understanding and resolving solid electrolyte interfaces. This paper summarizes simulation techniques for studying solid electrolyte interfaces. It focuses on micromesoscopic (<100 nm) scale simulation methods, especially quantum chemical methods for electrochemical simulations, reaction force field methods for large-scale chemical reaction simulations, and specific applications of these new techniques in studying the initial reactions and dynamic evolution of solid electrolyte interfaces in batteries. With the steady improvement of computer hardware and theoretical algorithms, multiscale theoretical simulations will provide the theoretical basis for high-energy-density battery development and intelligent manufacturing.

Key words: density functional theory, reactive force field, molecular dynamics simulation, monte carlo simulation, ab initio molecular dynamics

中图分类号: