1 |
LASIA A. Electrochemical impedance spectroscopy and its applications[M]. Modern Aspects of Electrochemistry, 2002: 143-248.
|
2 |
ORAZEM M E, TRIBOLLET B. Electrochemical Impedance Spectroscopy[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008.
|
3 |
WANG S S, ZHANG J B, GHARBI O, et al. Electrochemical impedance spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1: 41.
|
4 |
SONG G L. Equivalent circuit model for AC electrochemical impedance spectroscopy of concrete[J]. Cement and Concrete Research, 2000, 30(11): 1723-1730.
|
5 |
BARSOUKOV E, MACDONALD J R. Impedance spectroscopy[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018.
|
6 |
HUANG J, GAO Y, LUO J, et al. Editors' choice—Review—impedance response of porous electrodes: Theoretical framework, physical models and applications[J]. Journal of the Electrochemical Society, 2020, 167(16): 166503-166552.
|
7 |
李响, 黄秋安, 李伟恒, 等. 宏观均相多孔电极电化学阻抗谱基础[J]. 电化学, 2021, 27(5): 467-497.
|
|
LI X, HUANG Q A, LI W H, et al. Fundamentals of electrochemical impedance spectroscopy for macrohomogeneous porous electrodes[J]. Journal of Electrochemistry, 2021, 27(5): 467-497.
|
8 |
程蕾, 闫普选, 樊友军, 等. 玻碳电极界面的阻抗谱数学表达及定量分析[J]. 电化学, 2021, 27(5): 518-528.
|
|
CHENG L, YAN P X, FAN Y J, et al. Mathematical expression and quantitative analysis of impedance spectrum on the interface of glassy carbon electrode[J]. Journal of Electrochemistry, 2021, 27(5): 518-528.
|
9 |
王佳, 黄秋安, 李伟恒, 等. 电化学阻抗谱弛豫时间分布基础[J]. 电化学, 2020, 26(5): 607-627.
|
|
WANG J, HUANG Q A, LI W H, et al. Fundamentals of distribution of relaxation times for electrochemical impedance spectroscopy[J]. Journal of Electrochemistry, 2020, 26(5): 607-627.
|
10 |
张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学, 2021, doi: 10.13208/j.electrochem.210847.
|
|
ZHANG L L, LI C K, HUANG J. A beginner's guide to modeling of electric double layer under equilibrium, nonequilibrium and ac conditions[J]. Journal of Electrochemistry, doi: 10.13208/j.electrochem.210847.
|
11 |
黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学, 2020, 26(1): 3-18.
|
|
HUANG J. Electrochemical impedance spectroscopy for electrocatalytic interfaces and reactions: Classics never die[J]. Journal of Electrochemistry, 2020, 26(1): 3-18.
|
12 |
BARD A J, FAULKNER L R. Electrochemical methods: Fundamentals and applications Bard[J]. Anti-Corrosion Methods and Materials, 2003,50(5): doi:10.1108/acmm.2003.12850eae.001.
|
13 |
SCHMICKLER W, SANTOS E. Interfacial electrochemistry[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
|
14 |
BRUMLEVE T R, BUCK R P. Numerical solution of the Nernst-Planck and Poisson equation system with applications to membrane electrochemistry and solid state physics[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1978, 90(1): 1-31.
|
15 |
KUCZA W, DANIELEWSKI M, LEWENSTAM A. EIS simulations for ion-selective site-based membranes by a numerical solution of the coupled Nernst-Planck-Poisson equations[J]. Electrochemistry Communications, 2006, 8(3): 416-420.
|
16 |
KLOTZ D, SCHÖNLEBER M, SCHMIDT J P, et al. New approach for the calculation of impedance spectra out of time domain data[J]. Electrochimica Acta, 2011, 56(24): 8763-8769.
|
17 |
ALEXANDER C L, TRIBOLLET B, ORAZEM M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 1. influence of roughness[J]. Electrochimica Acta, 2015, 173: 416-424.
|
18 |
ALEXANDER C L, TRIBOLLET B, ORAZEM M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 2. capacitance[J]. Electrochimica Acta, 2016, 188: 566-573.
|
19 |
ALEXANDER C L, TRIBOLLET B, ORAZEM M E. Contribution of surface distributions to constant-phase-element (CPE) behavior: 3. Adsorbed intermediates[J]. Electrochimica Acta, 2017, 251: 99-108.
|
20 |
MACDONALD J R. Theory of space-charge polarization and electrode-discharge effects[J]. The Journal of Chemical Physics, 1973, 58(11): 4982-5001.
|
21 |
CIUCCI F, LAI W. Electrochemical impedance spectroscopy of phase transition materials[J]. Electrochimica Acta, 2012, 81: 205-216.
|
22 |
LI C K, HUANG J. Impedance response of electrochemical interfaces: part I. exact analytical expressions for ideally polarizable electrodes[J]. Journal of the Electrochemical Society, 2021, 167(16): 166517-166526.
|
23 |
HUANG J, LI C K. Impedance response of electrochemical interfaces: part II-chemisorption[J]. Journal of Physics Condensed Matter, 2021, 33(16): doi: 10.1088/1361-648X/abef9d.
|
24 |
GARCÍA-OSORIO D A, JAIMES R, VAZQUEZ-ARENAS J, et al. The kinetic parameters of the oxygen evolution reaction (OER) calculated on inactive anodes via EIS transfer functions: ·OH formation[J]. Journal of the Electrochemical Society, 2017, 164(11): E3321-E3328.
|
25 |
GEORGE K, VAN BERKEL M, ZHANG X Q, et al. Impedance spectra and surface coverages simulated directly from the electrochemical reaction mechanism: A nonlinear state-space approach[J]. The Journal of Physical Chemistry C, 2019, 123(15): 9981-9992.
|
26 |
SONG J, BAZANT M Z. Effects of nanoparticle geometry and size distribution on diffusion impedance of battery electrodes[J]. Journal of the Electrochemical Society, 2012, 160(1): A15-A24.
|
27 |
GOSWAMI N, KANT R. Theory for impedance response of grain and grain boundary in solid state electrolyte[J]. Journal of Electroanalytical Chemistry, 2019, 835:227-238.
|
28 |
KANT R, SINGH M B. Theory of the electrochemical impedance of mesostructured electrodes embedded with heterogeneous micropores[J]. The Journal of Physical Chemistry C, 2017, 121(13): 7164-7174.
|
29 |
DHILLON S, KANT R. Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed Capacitance and charge transfer resistance[J]. Journal of Chemical Sciences, 2017, 129(8): 1277-1292.
|