1 |
WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456.
|
2 |
TIKEKAR M D, CHOUDHURY S, TU Z, et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries[J]. Nature Energy, 2016, 1: doi: 10.1038/nenergy.2016.114.
|
3 |
XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy Environmetal Science, 2014, 7(2): 513-537.
|
4 |
CHEN S R, DAI F, CAI M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications[J]. ACS Energy Letters, 2020, 5(10): 3140-3151.
|
5 |
刘凡凡, 张志文, 叶淑芬, 等. 锂金属负极的挑战与改善策略研究进展[J]. 物理化学学报, 2021, 37(1): 19-44.
|
|
LIU F F, ZHANG Z W, YE S F, et al. Challenges and improvement strategies progress of lithium metal anode[J]. Acta Physico-Chimica Sinica, 2021, 37(1): 19-44.
|
6 |
ANDRE D, KIM S J, LAMP P, et al. Future generations of cathode materials: An automotive industry perspective[J]. Journal of Materials Chemistry A, 2015, 3(13): 6709-6732.
|
7 |
WU H P, JIA H, WANG C M, et al. Recent progress in understanding solid electrolyte interphase on lithium metal anodes[J]. Advanced Energy Materials, 2021, 11(5): doi: 10.1002/aenm.202003092.
|
8 |
HEISKANEN S K, KIM J, LUCHT B L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries[J]. Joule, 2019, 3(10): 2322-2333.
|
9 |
吴晨, 周颖, 朱晓龙, 等. 锂金属电池用高浓度电解液体系研究进展[J]. 物理化学学报, 2021, 37(2): 36-52.
|
|
WU C, ZHOU Y, ZHU X L, et al. Research progress on high concentration electrolytes for Li metal batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(2): 36-52.
|
10 |
XU L, TANG S, CHENG Y, et al. Interfaces in solid-state lithium batteries[J]. Joule, 2018, 2(10): 1991-2015.
|
11 |
WANG A, KADAM S, LI H, et al. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries[J]. npj Computational Materials, 2018, 4: doi: 10.1038/s41524-018-0064-0.
|
12 |
SUO L M, OH D, LIN Y X, et al. How solid-electrolyte interphase forms in aqueous electrolytes[J]. Journal of the American Chemical Society, 2017, 139(51): 18670-18680.
|
13 |
WINTER M. The solid electrolyte interphase-the most important and the least understood solid electrolyte in rechargeable Li batteries[J]. Zeitschrift Für Physikalische Chemie, 2009, 223(10/11): 1395-1406.
|
14 |
PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—The solid electrolyte interphase model[J]. Journal of the Electrochemical Society, 1979, 126(12): 2047-2051.
|
15 |
AURBACH D, EIN-ELY Y, ZABAN A. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J]. Journal of the Electrochemical Society, 1994, 141(1): L1-L3.
|
16 |
PELED E, GOLODNITSKY D, ARDEL G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society, 1997, 144(8): L208-L210.
|
17 |
XU Y B, WU H P, HE Y, et al. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy[J]. Nano Letters, 2020, 20(1): 418-425.
|
18 |
BOUCHET R. A stable lithium metal interface[J]. Nature Nanotechnology, 2014, 9(8): 572-573.
|
19 |
LI S, JIANG M W, XIE Y, et al. Developing high-performance lithium metal anode in liquid electrolytes: Challenges and progress[J]. Advanced Materials, 2018, 30(17): doi: 10.1002/adma.201706375.
|
20 |
WANG Y, NAKAMURA S, TASAKI K, et al. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: How does vinylene carbonate play its role as an electrolyte additive?[J]. Journal of the American Chemical Society, 2002, 124(16): 4408-4421.
|
21 |
BEDROV D, SMITH G D, VAN DUIN A C T. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: A molecular dynamics simulation study using the ReaxFF[J]. The Journal of Physical Chemistry A, 2012, 116(11): 2978-2985.
|
22 |
SODEYAMA K, YAMADA Y, AIKAWA K, et al. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte[J]. The Journal of Physical Chemistry C, 2014, 118(26): 14091-14097.
|
23 |
MA Y G, BALBUENA P B. DFT study of reduction mechanisms of ethylene carbonate and fluoroethylene carbonate on Li+-adsorbed Si clusters[J]. Journal of the Electrochemical Society, 2014, 161(8): E3097-E3109.
|
24 |
LEUNG K, TENNEY C M. Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries[J]. The Journal of Physical Chemistry C, 2013, 117(46): 24224-24235.
|
25 |
MORADABADI A, BAKHTIARI M, KAGHAZCHI P. Effect of anode composition on solid electrolyte interphase formation[J]. Electrochimica Acta, 2016, 213: 8-13.
|
26 |
SHI S Q, LU P, LIU Z Y, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society, 2012, 134(37): 15476-15487.
|
27 |
LEUNG K, QI Y, ZAVADIL K R, et al. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries: First-principles modeling and experimental studies[J]. Journal of the American Chemical Society, 2011, 133(37): 14741-14754.
|
28 |
WANG Y W, ZHANG W Q, CHEN L D, et al. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations[J]. Science and Technology of Advanced Materials, 2017, 18(1): 134-146.
|
29 |
BORODIN O, OLGUIN M, SPEAR C E, et al. Towards high throughput screening of electrochemical stability of battery electrolytes[J]. Nanotechnology, 2015, 26(35): doi: 10.1088/0957-4484/26/35/354003.
|
30 |
HE Q, YU B, LI Z H, et al. Density functional theory for battery materials[J]. Energy & Environmental Materials, 2019, 2(4): 264-279.
|
31 |
TASAKI K. Solvent decompositions and physical properties of decomposition compounds in Li-ion battery electrolytes studied by DFT calculations and molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2005, 109(7): 2920-2933.
|
32 |
TASAKI K, KANDA K, KOBAYASHI T, et al. Theoretical studies on the reductive decompositions of solvents and additives for lithium-ion batteries near lithium anodes[J]. Journal of the Electrochemical Society, 2006, 153(12): doi: 10.1149/1.2354460.
|
33 |
WANG Y X, BALBUENA P B. Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: density functional theory studies[J]. The Journal of Physical Chemistry B, 2002, 106(17): 4486-4495.
|
34 |
WANG Y X, NAKAMURA S, TASAKI K, et al. Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: How does vinylene carbonate play its role as an electrolyte additive?[J]. Journal of the American Chemical Society, 2002, 124(16): 4408-4421.
|
35 |
CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474.
|
36 |
LEUNG A K K, HAFEZ I M, BAOUKINA S, et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core[J]. The Journal of Physical Chemistry C, Nanomaterials and Interfaces, 2012, 116(34): 18440-18450.
|
37 |
USHIROGATA K, SODEYAMA K, OKUNO Y, et al. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery[J]. Journal of the American Chemical Society, 2013, 135(32): 11967-11974.
|
38 |
OKUNO Y, USHIROGATA K, SODEYAMA K, et al. Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: An ab initio study[J]. Physical Chemistry Chemical Physics: PCCP, 2016, 18(12): 8643-8653.
|
39 |
DUIN A C, DASGUPTA S, LORANT F, et al. ReaxFF: A reactive force field for hydrocarbons[J]. The Journal of Physical Chemistry A, 2001, 105(41): 9396-9409.
|
40 |
SENFTLE T P, HONG S, ISLAM M M, et al. The ReaxFF reactive force-field: Development, applications and future directions[J]. npj Computational Materials, 2016, 2: doi: 10.1038/npjcompumats.2015.11.
|
41 |
KIM S P, DUIN A C, SHENOY V B. Effect of electrolytes on the structure and evolution of the solid electrolyte interphase (SEI) in Li-ion batteries: A molecular dynamics study[J]. Journal of Power Sources, 2011, 196(20): 8590-8597.
|
42 |
CAMACHO-FORERO L E, SMITH T W, BERTOLINI S, et al. Reactivity at the lithium-metal anode surface of lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2015, 119(48):26828-26839.
|
43 |
BERTOLINI S, BALBUENA P B. Buildup of the solid electrolyte interphase on lithium-metal anodes: reactive molecular dynamics study[J]. The Journal of Physical Chemistry C, 2018, 122(20):10783-10791.
|
44 |
YUN K S, PAI S J, YEO B C, et al. Simulation protocol for prediction of a solid-electrolyte interphase on the silicon-based anodes of a lithium-ion battery: ReaxFF reactive force field[J]. The Journal of Physical Chemistry Letters, 2017, 8(13): 2812-2818.
|
45 |
BEDROV D, BORODIN O, HOOPER J B. Li+ transport and mechanical properties of model solid electrolyte interphases (SEI): Insight from atomistic molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2017, 121(30): 16098-16109.
|
46 |
BORODIN O, ZHUANG G V, ROSS P N, et al. Molecular dynamics simulations and experimental study of lithium ion transport in dilithium ethylene dicarbonate[J]. The Journal of Physical Chemistry C, 2013, 117(15): 7433-7444.
|
47 |
UNKE O T, CHMIELA S, SAUCEDA H E, et al. Machine learning force fields[J]. Chemical Reviews, 2021, 121(16): 10142-10186.
|
48 |
BEHLER J. Four generations of high-dimensional neural network potentials[J]. Chemical Reviews, 2021, 121(16): 10037-10072.
|
49 |
DERINGER V L, BARTÓK A P, BERNSTEIN N, et al. Gaussian process regression for materials and molecules[J]. Chemical Reviews, 2021, 121(16): 10073-10141.
|
50 |
BEDROV D, PIQUEMAL J P, BORODIN O, et al. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields[J]. Chemical Reviews, 2019, 119(13): 7940-7995.
|
51 |
BARTÓK A P, KONDOR R, CSÁNYI G. On representing chemical environments[J]. Physical Review B, 2013, 87(18): doi: 10.1103/PhysRevB.87.184115.
|
52 |
CHOUDHURY S, ARCHER L A. Lithium fluoride additives for stable cycling of lithium batteries at high current densities[J]. Advanced Electronic Materials, 2016, 2(2): doi: 10.1002/aelm.201500246.
|
53 |
LU Y, TU Z, ARCHER L A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes[J]. Nature Materials, 2014, 13(10): 961-969.
|
54 |
WOOD S M, PHAM C H, RODRIGUEZ R, et al. K+ reduces lithium dendrite growth by forming a thin, less-resistive solid electrolyte interphase[J]. ACS Energy Letters, 2016, 1(2): 414-419.
|
55 |
DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456.
|
56 |
LI W, YAO H, YAN K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms8436.
|
57 |
ZHANG X Q, CHENG X B, CHEN X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017, 27(10): doi: 10.1002/adfm.201605989.
|
58 |
QIAN J, HENDERSON W A, XU W, et al. High rate and stable cycling of lithium metal anode[J]. Nature Communications, 2015, 6: doi: 10.1038/ncomms7362.
|
59 |
SUO L M, XUE W J, GOBET M, et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1156-1161.
|
60 |
ZENG Z, MURUGESAN V, HAN K S, et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries[J]. Nature Energy, 2018, 3(8): 674-681.
|
61 |
JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes[J]. Nature Energy, 2018, 3(9): 739-746.
|