1 |
QADIR S A, AL-MOTAIRI H, TAHIR F, et al. Incentives and strategies for financing the renewable energy transition: A review[J]. Energy Reports, 2021, 7: 3590-3606.
|
2 |
CHEN X L, PAUL R, DAI L M. Carbon-based supercapacitors for efficient energy storage[J]. National Science Review, 2017, 4(3): 453-489.
|
3 |
RAHMAN S T, RHEE K Y, PARK S J. Nanostructured multifunctional electrocatalysts for efficient energy conversion systems: Recent perspectives[J]. Nanotechnology Reviews, 2021, 10(1): 137-157.
|
4 |
RATNAKAR R R, GUPTA N, ZHANG K, et al. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation[J]. International Journal of Hydrogen Energy, 2021, 46(47): 24149-24168.
|
5 |
ANWAR S, KHAN F, ZHANG Y H, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32284-32317.
|
6 |
WEI T, LIU B, JIA L C, et al. Perovskite materials for highly efficient catalytic CH4 fuel reforming in solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24441-24460.
|
7 |
LIU Q F, PAN Z F, WANG E D, et al. Aqueous metal-air batteries: Fundamentals and applications[J]. Energy Storage Materials, 2020, 27: 478-505.
|
8 |
CHEN F Y, WU Z Y, ADLER Z, et al. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design[J]. Joule, 2021, 5(7): 1704-1731.
|
9 |
CAO D F, SHOU H W, CHEN S M, et al. Manipulating and probing the structural self-optimization in oxygen evolution reaction catalysts[J]. Current Opinion in Electrochemistry, 2021, 30: doi: 10.1016/j.coelec.2021.100788.
|
10 |
WANG X Y, HUO P Y, LIU Y, et al. High-throughput screening of ternary vanadate photoanodes for efficient oxygen evolution reactions: A review of band-gap engineering[J]. Applied Catalysis A: General, 2021, 616: doi: 10.1016/j.apcata.2021.118073.
|
11 |
MAZZEO A, SANTALLA S, GAVIGLIO C, et al. Recent progress in homogeneous light-driven hydrogen evolution using first-row transition metal catalysts[J]. Inorganica Chimica Acta, 2021, 517: doi: 10.1016/j.ica.2020.119950.
|
12 |
KUMBHAR V S, LEE H, LEE J, et al. Recent advances in water-splitting electrocatalysts based on manganese oxide[J]. Carbon Resources Conversion, 2019, 2(3): 242-255.
|
13 |
SUN H N, HE J, HU Z W, et al. Multi-active sites derived from a single/double perovskite hybrid for highly efficient water oxidation[J]. Electrochimica Acta, 2019, 299: 926-932.
|
14 |
LIU Z, WANG G, ZHU X, et al. Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 59(12): 4736-4742.
|
15 |
CHEN R, HUNG S F, ZHOU D, et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction[J]. Advanced Materials, 2019, 31(41): doi: 10.1002/adma.201903909.
|
16 |
PENG L S, SHAH S S A, WEI Z D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2018, 39(10): 1575-1593.
|
17 |
KANG T, KIM J. Optimal cobalt-based catalyst containing high-ratio of oxygen vacancy synthesized from metal-organic-framework (MOF) for oxygen evolution reaction (OER) enhancement[J]. Applied Surface Science, 2021, 560: doi: 10.1016/j.apsusc.2021.150035.
|
18 |
LIU X M, CUI X Y, DASTAFKAN K, et al. Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions[J]. Journal of Energy Chemistry, 2021, 53: 290-302.
|
19 |
SRINIVASA N, SHREENIVASA L, ADARAKATTI P S, et al. Functionalized Co3O4 graphitic nanoparticles: A high performance electrocatalyst for the oxygen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31380-31388.
|
20 |
LENG M, HUANG X L, XIAO W, et al. Enhanced oxygen evolution reaction by Co-O-C bonds in rationally designed Co3O4/graphene nanocomposites[J]. Nano Energy, 2017, 33: 445-452.
|
21 |
NAGAJYOTHI P C, RAMARAGHAVULU R, MUNIRATHNAM K, et al. One-pot hydrothermal synthesis: Enhanced MOR and OER performance using low-cost Mn3O4 electrocatalyst[J]. International Journal of Hydrogen Energy, 2021, 46(27): 13946-13951.
|
22 |
RANI B J, RAVI G, YUVAKKUMAR R, et al. Neutral and alkaline chemical environment dependent synthesis of Mn3O4 for oxygen evolution reaction (OER)[J]. Materials Chemistry and Physics, 2020, 247: doi: 10.1016/j.matchemphys.2020.122864.
|
23 |
WEI M M, HAN Y Q, LIU Y, et al. Green preparation of Fe3O4 coral-like nanomaterials with outstanding magnetic and OER properties[J]. Journal of Alloys and Compounds, 2020, 831: doi: 10.1016/j.jallcom.2020.154702.
|
24 |
ISHIHARA T, YOKOE K, MIYANO T, et al. Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery[J]. Electrochimica Acta, 2019, 300: 455-460.
|
25 |
ZENG K, LI W, ZHOU Y, et al. Multilayer hollow MnCo2O4 microsphere with oxygen vacancies as efficient electrocatalyst for oxygen evolution reaction[J]. Chemical Engineering Journal, 2021, 421: doi: 10.1016/j.cej.2020.127831.
|
26 |
YIN J, JIN J, LIU H B, et al. NiCo2O4-based nanosheets with uniform 4 nm mesopores for excellent Zn-air battery performance[J]. Advanced Materials, 2020, 32(39): doi: 10.1002/adma.202001651.
|
27 |
FARIA E R, RIBEIRO F M, FRANCO D V, et al. Fabrication and characterisation of a mixed oxide-covered mesh electrode composed of NiCo2O4 and its capability of generating hydroxyl radicals during the oxygen evolution reaction in electrolyte-free water[J]. Journal of Solid State Electrochemistry, 2018, 22(5): 1289-1302.
|
28 |
TAO L M, GUO P H, ZHU W L, et al. Highly efficient mixed-metal spinel cobaltite electrocatalysts for the oxygen evolution reaction[J]. Chinese Journal of Catalysis, 2020, 41(12): 1855-1863.
|
29 |
ALEGRE C, BUSACCA C, DI BLASI A, et al. Toward more efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning[J]. Materials Today Energy, 2020, 18: doi: 10.1016/j.mtener.2020. 100508.
|
30 |
TONG Y L, LIU H Q, DAI M Z, et al. Metal-organic framework derived Co3O4/PPy bifunctional electrocatalysts for efficient overall water splitting[J]. Chinese Chemical Letters, 2020, 31(9): 2295-2299.
|
31 |
LIU W, HAN J, YAMADA I, et al. Effects of zinc ions at tetrahedral sites in spinel oxides on catalytic activity for oxygen evolution reaction[J]. Journal of Catalysis, 2021, 394: 50-57.
|
32 |
HUANG Y, ZHANG S L, LU X F, et al. Trimetallic spinel NiCo2-xFexO4 nanoboxes for highly efficient electrocatalytic oxygen evolution[J]. Angewandte Chemie International Edition, 2021, 60(21): 11841-11846.
|
33 |
LIU W J, RAO D W, BAO J, et al. Strong coupled spinel oxide with N-rGO for high-efficiency ORR/OER bifunctional electrocatalyst of Zn-air batteries[J]. Journal of Energy Chemistry, 2021, 57: 428-435.
|
34 |
SUEN N T, HUNG S F, QUAN Q, et al. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives[J]. Chemical Society Reviews, 2017, 46(2): 337-365.
|
35 |
NGUYEN T X, LIAO Y C, LIN C C, et al. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction[J]. Advanced Functional Materials, 2021, 31(27): doi: 10.1002/adfm. 202101632.
|
36 |
KIM B J, FABBRI E, ABBOTT D F, et al. Functional role of Fe-doping in co-based perovskite oxide catalysts for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2019, 141(13): 5231-5240.
|
37 |
WANG H, WANG J, PI Y, et al. Double perovskite LaFexNi1-xO3 nanorods enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie International Edition, 2019, 58(8): 2316-2320.
|
38 |
XIONG J, ZHONG H, LI J, et al. Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution[J]. Applied Catalysis B: Environmental, 2019, 256: doi: 10.1016/j.apcatb.2019.117817.
|
39 |
POROKHIN S V, NIKITINA V A, AKSYONOV D A, et al. Mixed-cation perovskite La0.6Ca0.4Fe0.7Ni0.3O2.9 as a stable and efficient catalyst for the oxygen evolution reaction[J]. ACS Catalysis, 2021, 11(13): 8338-8348.
|
40 |
ZHU K Y, WU T, LI M R, et al. Perovskites decorated with oxygen vacancies and Fe-Ni alloy nanoparticles as high-efficiency electrocatalysts for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(37): 19836-19845.
|
41 |
KOU Z K, YU Y, LIU X M, et al. Potential-dependent phase transition and Mo-enriched surface reconstruction of γ-CoOOH in a heterostructured co-Mo2C precatalyst enable water oxidation[J]. ACS Catalysis, 2020, 10(7): 4411-4419.
|
42 |
HU W K, LIU Q, LV T, et al. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts[J]. Electrochimica Acta, 2021, 381: doi: 10.1016/j.electacta.2021.138276.
|
43 |
WANG Q, O'HARE D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155.
|
44 |
YIN H, TANG Z. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage[J]. Chemical Society Reviews, 2016, 45(18): 4873-4891.
|
45 |
ZHU W J, CHEN W X, YU H H, et al. NiCo/NiCo-OH and NiFe/NiFe-OH core shell nanostructures for water splitting electrocatalysis at large currents[J]. Applied Catalysis B: Environmental, 2020, 278: doi: 10.1016/j.apcatb.2020.119326.
|
46 |
DIONIGI F, ZHU J, ZENG Z, et al. Intrinsic electrocatalytic activity for oxygen evolution of crystalline 3d-transition metal layered double hydroxides[J]. Angewandte Chemie International Edition, 2021, 60(26): 14446-14457.
|
47 |
LEE S, BAI L, HU X. Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide[J]. Angewandte Chemie International Edition, 2020, 59(21): 8072-8077.
|
48 |
FERREIRA DE A J, DIONIGI F, MERZDORF T, et al. Evidence of Mars-van-krevelen mechanism in the electrochemical oxygen evolution on Ni-based catalysts[J]. Angew Chem Int Ed Engl, 2021, 60(27): 14981-14988.
|
49 |
ZHU G X, LI X Y, LIU Y J, et al. Scalable surface engineering of commercial metal foams for defect-rich hydroxides towards improved oxygen evolution[J]. Journal of Materials Chemistry A, 2020, 8(25): 12603-12612.
|
50 |
LIU Z J, HUANG Y C, WANG Y Y, et al. Quinary defect-rich ultrathin bimetal hydroxide nanosheets for water oxidation[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44018-44025.
|
51 |
WANG B, SHANG J, GUO C, et al. A general method to ultrathin bimetal-MOF nanosheets arrays via in situ transformation of layered double hydroxides arrays[J]. Small, 2019, 15(6): doi: 10.1002/smll.201804761.
|
52 |
ZHANG J F, ZHANG H J, HUANG Y. Electron-rich NiFe layered double hydroxides via interface engineering for boosting electrocatalytic oxygen evolution[J]. Applied Catalysis B: Environmental, 2021, 297: doi: 10.1016/j.apcatb.2021.120453.
|
53 |
GU H Y, SHI G S, CHEN H C, et al. Strong catalyst-support interactions in electrochemical oxygen evolution on Ni-Fe layered double hydroxide[J]. ACS Energy Letters, 2020, 5(10): 3185-3194.
|