储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1952-1962.doi: 10.19799/j.cnki.2095-4239.2021.0365

• 氢能与燃料电池专刊 • 上一篇    下一篇

3D打印技术在固体氧化物燃料电池领域的研究进展

郑丽娜(), 王文中(), 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津(), 杨乃涛   

  1. 山东理工大学化学化工学院,山东 淄博 255049
  • 收稿日期:2021-07-26 修回日期:2021-08-15 出版日期:2021-11-05 发布日期:2021-11-03
  • 作者简介:郑丽娜(1996—),女,硕士研究生,研究方向为固体氧化物燃料电池。E-mail:z19862575956@163.com|王文中(1999—),男,硕士研究生,研究方向为固体氧化物燃料电池。E-mail:qq344882409@gmail.com(共同一作)|张津津,讲师,硕士生导师,研究方向为固体氧化物燃料电池。E-mail:jjzhang@sdut.edu.cn
  • 基金资助:
    国家自然科学基金(21808128);山东省重点研发项目(2019GGX103016)

Three-dimensional printing technologies in the field of solid oxide fuel cells

Lina ZHENG(), Wenzhong WANG(), Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG(), Naitao YANG   

  1. College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, China
  • Received:2021-07-26 Revised:2021-08-15 Online:2021-11-05 Published:2021-11-03

摘要:

3D打印又称增材制造,是通过逐层打印来制造三维对象的过程,涉及机械、计算机、数控及材料等相关技术,被广泛应用于航空航天、生物医疗、电子、能源化工等行业。本文主要介绍了几种常用3D打印技术,重点阐述了其在固体氧化物燃料电池(SOFC)阴极、阳极、电解质、电堆组件和电堆辅助系统制备中的应用。3D打印技术通过可控调节SOFC微观结构、比表面积和组分分布可提高SOFC单电池的电化学性能;通过一体化电堆支撑体结构设计有望改善电池堆内部传递行为,避免因大量接头和组装件的出现引起的材料性能不匹配问题,提高电池稳定性和寿命,简化和优化SOFC电堆制备工艺;3D打印在SOFC电堆辅助系统的设计和制备中也表现出独特的优势,在一体化制备电堆组件和电堆方面有很大潜力。本文还分析了目前3D打印技术在SOFC领域的技术挑战,并针对3D打印制备SOFC存在的问题和不足提出了建议,指出高分辨率微纳3D打印技术的研发,燃料电池浆料的创新与开发,以及混合式、多材料3D打印机的制造或将成为解决现有问题的重要方向。

关键词: 3D打印, 光固化, 喷墨打印, 固体氧化物燃料电池(SOFC), 电池堆

Abstract:

Three-dimensional (3D) printing, also known as additive manufacturing technology, is a method of producing three-dimensional objects using a layer-by-layer printing method that involves machinery, computers, numerical control, materials, and other technologies. It has been widely used in the areas of aerospace, biomedical, electronic, energy, and chemical industries. This paper primarily introduces several common 3D printing technologies, with a focus on the 3D printing of cathodes, anodes, electrolytes, and cell stacks for solid oxide fuel cells (SOFCs). It is thought to improve a SOFC's electrochemical performance by tailoring its microstructure, specific surface area, or composition distribution. The structural design of monolithic stack support is expected to improve the internal transport behavior of cell stacks. Using a 3D printing method, the SOFC stack preparation process can be simplified and optimized, or even integrated into one step, avoiding material mismatch caused by a large number of joints and assemblies and improving the stability and service life of the cell stack. 3D printing also provides distinct advantages in the design and preparation of SOFC stack auxiliary systems, as well as significant potential in the integrated preparation of stack components and stacks. Furthermore, the technical challenges of 3D printing technologies in the SOFC field are highlighted. In addition, some solutions to the problems and deficiencies of SOFCs prepared using the 3D printing method are proposed. The research and development of high-resolution ceramic 3D printing technologies, the innovations and developments of fuel cell slurry, and the manufacturing of hybrid and multi-material 3D printers could all become important directions for resolving existing problems.

Key words: 3D printing, photocuring, inkjet printing, solid oxide fuel cell (SOFC), cell stack

中图分类号: