储能科学与技术 ›› 2021, Vol. 10 ›› Issue (6): 1952-1962.doi: 10.19799/j.cnki.2095-4239.2021.0365
郑丽娜(), 王文中(), 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津(), 杨乃涛
收稿日期:
2021-07-26
修回日期:
2021-08-15
出版日期:
2021-11-05
发布日期:
2021-11-03
作者简介:
郑丽娜(1996—),女,硕士研究生,研究方向为固体氧化物燃料电池。E-mail:基金资助:
Lina ZHENG(), Wenzhong WANG(), Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG(), Naitao YANG
Received:
2021-07-26
Revised:
2021-08-15
Online:
2021-11-05
Published:
2021-11-03
摘要:
3D打印又称增材制造,是通过逐层打印来制造三维对象的过程,涉及机械、计算机、数控及材料等相关技术,被广泛应用于航空航天、生物医疗、电子、能源化工等行业。本文主要介绍了几种常用3D打印技术,重点阐述了其在固体氧化物燃料电池(SOFC)阴极、阳极、电解质、电堆组件和电堆辅助系统制备中的应用。3D打印技术通过可控调节SOFC微观结构、比表面积和组分分布可提高SOFC单电池的电化学性能;通过一体化电堆支撑体结构设计有望改善电池堆内部传递行为,避免因大量接头和组装件的出现引起的材料性能不匹配问题,提高电池稳定性和寿命,简化和优化SOFC电堆制备工艺;3D打印在SOFC电堆辅助系统的设计和制备中也表现出独特的优势,在一体化制备电堆组件和电堆方面有很大潜力。本文还分析了目前3D打印技术在SOFC领域的技术挑战,并针对3D打印制备SOFC存在的问题和不足提出了建议,指出高分辨率微纳3D打印技术的研发,燃料电池浆料的创新与开发,以及混合式、多材料3D打印机的制造或将成为解决现有问题的重要方向。
中图分类号:
郑丽娜, 王文中, 贾凯杰, 邱少峰, 朱浩源, 于方永, 孟秀霞, 张津津, 杨乃涛. 3D打印技术在固体氧化物燃料电池领域的研究进展[J]. 储能科学与技术, 2021, 10(6): 1952-1962.
Lina ZHENG, Wenzhong WANG, Kaijie JIA, Shaofeng QIU, Haoyuan ZHU, Fangyong YU, Xiuxia MENG, Jinjin ZHANG, Naitao YANG. Three-dimensional printing technologies in the field of solid oxide fuel cells[J]. Energy Storage Science and Technology, 2021, 10(6): 1952-1962.
1 | TAI X Y, ZHAKEYEV A, WANG H, et al. Accelerating fuel cell development with additive manufacturing technologies: State of the art, opportunities and challenges[J]. Fuel Cells, 2019, 19(6): 636-650. |
2 | ADAMS T A, NEASE J, TUCKER D, et al. Energy conversion with solid oxide fuel cell systems: A review of concepts and outlooks for the short- and long-term[J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3089-3111. |
3 | XING B H, YAO Y X, MENG X, et al. Self-supported yttria-stabilized zirconia ripple-shaped electrolyte for solid oxide fuel cells application by digital light processing three-dimension printing[J]. Scripta Materialia, 2020, 181: 62-65. |
4 | MASCIANDARO S, TORRELL M, LEONE P, et al. Three-dimensional printed yttria-stabilized zirconia self-supported electrolytes for solid oxide fuel cell applications[J]. Journal of the European Ceramic Society, 2019, 39(1): 9-16. |
5 | PESCE A, HORNÉS A, NÚÑEZ M, et al. 3D printing the next generation of enhanced solid oxide fuel and electrolysis cells[J]. Journal of Materials Chemistry A, 2020, 8(33): 16926-16932. |
6 | TOMOV R I, KRAUZ M, JEWULSKI J, et al. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(21): 7160-7167. |
7 | ESPOSITO V, GADEA C, HJELM J, et al. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells[J]. Journal of Power Sources, 2015, 273: 89-95. |
8 | SHIMADA H, OHBA F, LI X Y, et al. Electrochemical behaviors of nickel/yttria-stabilized zirconia anodes with distribution controlled yttrium-doped Barium zirconate by ink-jet technique[J]. Journal of the Electrochemical Society, 2012, 159(7): F360-F367. |
9 | WEI L Y, ZHANG J J, YU F Y, et al. A novel fabrication of yttria-stabilized-zirconia dense electrolyte for solid oxide fuel cells by 3D printing technique[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6182-6191. |
10 | CHEN Q Y, QIU Q Y, YAN X M, et al. A compact and seal-less direct carbon solid oxide fuel cell stack stepping into practical application[J]. Applied Energy, 2020, 278: 115657. |
11 | SINGHAL S C. Solid oxide fuel cells for stationary, mobile, and military applications[J]. Solid State Ionics, 2002, 152/153: 405-410. |
12 | HUSSAIN J, ALI R, AKHTAR M N, et al. Modeling and simulation of planar SOFC to study the electrochemical properties[J]. Current Applied Physics, 2020, 20(5): 660-672. |
13 | GUO J, ZENG Y, LI P R, et al. Fine lattice structural titanium dioxide ceramic produced by DLP 3D printing[J]. Ceramics International, 2019, 45(17): 23007-23012. |
14 | SUZUKI T, FUNAHASHI Y, YAMAGUCHI T, et al. Fabrication and characterization of micro tubular SOFCs for advanced ceramic reactors[J]. Journal of Alloys and Compounds, 2008, 451(1/2): 632-635. |
15 | LI C, CHEN H L, SHI H G, et al. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing[J]. Journal of Power Sources, 2015, 273: 465-471. |
16 | KIM M, KIM D H, HAN G D, et al. Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2020, 843: 155806. |
17 | MAHATA T, NAIR S R, LENKA R K, et al. Fabrication of Ni-YSZ anode supported tubular SOFC through iso-pressing and co-firing route[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3874-3882. |
18 | SUZUKI T, FUNAHASHI Y, YAMAGUCHI T, et al. Development of cube-type SOFC stacks using anode-supported tubular cells[J]. Journal of Power Sources, 2008, 175(1): 68-74. |
19 | RUIZ-MORALES J C, HERNÁNDEZ-RODRÍGUEZ E M, ACOSTA-MORA P, et al. Prospective use of the 3D printing technology for the microstructural engineering of Solid Oxide Fuel Cell components[J]. Boletín De La Sociedad Española De Cerámica y Vidrio, 2014, 53(5): 213-216. |
20 | ZHANG J J, WEI L Y, MENG X X, et al. Digital light processing-stereolithography three-dimensional printing of yttria-stabilized zirconia[J]. Ceramics International, 2020, 46(7): 8745-8753. |
21 | 3D printing and prototyping manifolds for microtubular solid oxide fuel cells (mSOFCs)[J]. International Journal of Science and Research (IJSR), 2015, 4(11): 709-712. |
22 | TOFAIL S A M, KOUMOULOS E P, BANDYOPADHYAY A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Materials Today, 2018, 21(1): 22-37. |
23 | SUKESHINI M A, CUMMINS R, REITZ T L, et al. Ink-jet printing: A versatile method for multilayer solid oxide fuel cells fabrication[J]. Journal of the American Ceramic Society, 2009, 92(12): 2913-2919. |
24 | DONG H M, CARR W W, MORRIS J F. An experimental study of drop-on-demand drop formation[J]. Physics of Fluids, 2006, 18(7): 072102. |
25 | WANG J, GOYANES A, GAISFORD S, et al. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms[J]. International Journal of Pharmaceutics, 2016, 503(1/2): 207-212. |
26 | CHO Y H, LEE I H, CHO D W. Laser scanning path generation considering photopolymer solidification in micro-stereolithography[J]. Microsystem Technologies, 2005, 11(2/3): 158-167. |
27 | SUN C, FANG N, WU D M, et al. Projection micro-stereolithography using digital micro-mirror dynamic mask[J]. Sensors and Actuators A: Physical, 2005, 121(1): 113-120. |
28 | QUAN H Y, ZHANG T, XU H, et al. Photo-curing 3D printing technique and its challenges[J]. Bioactive Materials, 2020, 5(1): 110-115. |
29 | WU L F, ZHAO L D, JIAN M, et al. EHMP-DLP: Multi-projector DLP with energy homogenization for large-size 3D printing[J]. Rapid Prototyping Journal, 2018, 24(9): 1500-1510. |
30 | CHANG D G, LI S M, AN C F. The influence analysis of globular indexing cam mechanism size parameters on transmission performance[J]. Advanced Materials Research, 2012, 426: 163-167. |
31 | MANÇANARES C G, EDUARDO S Z, CAVALCANTE DA SILVA J, et al. Additive manufacturing process selection based on parts' selection criteria[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5/6/7/8): 1007-1014. |
32 | HWA L C, RAJOO S, NOOR A M, et al. Recent advances in 3D printing of porous ceramics: A review[J]. Current Opinion in Solid State and Materials Science, 2017, 21(6): 323-347. |
33 | CHEN Z W, LI Z Y, LI J J, et al. 3D printing of ceramics: A review[J]. Journal of the European Ceramic Society, 2019, 39(4): 661-687. |
34 | SCOTT CRUMP S. Apparatus and method for creating three-dimensional objects: US5121329[P]. 1992-06-09. |
35 | WITTBRODT B, PEARCE J M. The effects of PLA color on material properties of 3-D printed components[J]. Additive Manufacturing, 2015, 8: 110-116. |
36 | MOHAMED O A, MASOOD S H, BHOWMIK J L. Optimization of fused deposition modeling process parameters: A review of current research and future prospects[J]. Advances in Manufacturing, 2015, 3(1): 42-53. |
37 | AHN S H, MONTERO M, ODELL D, et al. Anisotropic material properties of fused deposition modeling ABS[J]. Rapid Prototyping Journal, 2002, 8(4): 248-257. |
38 | TAUFIK M, JAIN P K. A study of build edge profile for prediction of surface roughness in fused deposition modeling[J]. Journal of Manufacturing Science and Engineering, 2016, 138(6): 061002. DOI:10.1115/1.4032193. |
39 | LIU TSANG V, BHATIA S N. Three-dimensional tissue fabrication[J]. Advanced Drug Delivery Reviews, 2004, 56(11): 1635-1647. |
40 | LI J P, HABIBOVIC P, VAN DEN DOEL M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28(18): 2810-2820. |
41 | FEILDEN E, BLANCA E G T, GIULIANI F, et al. Robocasting of structural ceramic parts with hydrogel inks[J]. Journal of the European Ceramic Society, 2016, 36(10): 2525-2533. |
42 | LEWIS J A, SMAY J E, STUECKER J, et al. Direct ink writing of three-dimensional ceramic structures[J]. Journal of the American Ceramic Society, 2006, 89(12): 3599-3609. |
43 | ELSAYED H, COLOMBO P, BERNARDO E. Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers[J]. Journal of the European Ceramic Society, 2017, 37(13): 4187-4195. |
44 | DUDEK M, TOMOV R I, WANG C, et al. Feasibility of direct carbon solid oxide fuels cell (DC-SOFC) fabrication by inkjet printing technology[J]. Electrochimica Acta, 2013, 105: 412-418. |
45 | RUIZ-MORALES J C, TARANCÓN A, CANALES-VÁZQUEZ J, et al. Three dimensional printing of components and functional devices for energy and environmental applications[J]. Energy & Environmental Science, 2017, 10(4): 846-859. |
46 | SEO H, IWAI H, KISHIMOTO M, et al. Microextrusion printing for increasing electrode-electrolyte interface in anode-supported solid oxide fuel cells[J]. Journal of Power Sources, 2020, 450: 227682. |
47 | MOUSSAOUI H, SHARMA R K, DEBAYLE J, et al. Microstructural correlations for specific surface area and triple phase boundary length for composite electrodes of solid oxide cells[J]. Journal of Power Sources, 2019, 412: 736-748. |
48 | SUKESHINI A M, CUMMINS R, REITZ T L, et al. Inkjet printing of anode supported SOFC: Comparison of slurry pasted cathode and printed cathode[J]. Electrochemical and Solid-State Letters, 2009, 12(12): B176. |
49 | HAN G D, CHOI H J, BAE K, et al. Fabrication of lanthanum strontium cobalt ferrite-gadolinium-doped ceria composite cathodes using a low-price inkjet printer[J]. ACS Applied Materials & Interfaces, 2017, 9(45): 39347-39356. |
50 | YASHIRO N, USUI T, KIKUTA K. Application of a thin intermediate cathode layer prepared by inkjet printing for SOFCs[J]. Journal of the European Ceramic Society, 2010, 30(10): 2093-2098. |
51 | LI C, SHI H G, RAN R, et al. Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance[J]. International Journal of Hydrogen Energy, 2013, 38(22): 9310-9319. |
52 | BERGES C, WAIN A, ANDÚJAR R, et al. Fused filament fabrication for anode supported SOFC development: Towards advanced, scalable and cost-competitive energetic systems[J]. International Journal of Hydrogen Energy, 2021, 46(51): 26174-26184. |
53 | HUANG W H, FINNERTY C, SHARP R, et al. High-performance 3D printed microtubular solid oxide fuel cells[J]. Advanced Materials Technologies, 2017, 2(4): 1600258. |
54 | CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48(2): 57-170. |
55 | MENG B, HE X D, SUN Y, et al. Preparation of YSZ electrolyte coatings for SOFC by electron beam physical vapor deposition combined with a Sol infiltration treatment[J]. Materials Science and Engineering: B, 2008, 150(2): 83-88. |
56 | POLISHKO I, IVANCHENKO S, HORDA R, et al. Tape casted SOFC based on Ukrainian 8YSZ powder[J]. Materials Today: Proceedings, 2019, 6: 237-241. |
57 | YOUNG D, SUKESHINI A M, CUMMINS R, et al. Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells[J]. Journal of Power Sources, 2008, 184(1): 191-196. |
58 | CEBOLLERO J A, LAHOZ R, LAGUNA-BERCERO M A, et al. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance[J]. Journal of Power Sources, 2017, 360: 336-344. |
59 | KONNO A, IWAI H, INUYAMA K, et al. Mesoscale-structure control at anode/electrolyte interface in solid oxide fuel cell[J]. Journal of Power Sources, 2011, 196(1): 98-109. |
60 | CHESNAUD A, DELLORO F, GEAGEA M, et al. Corrugated electrode/electrolyte interfaces in SOFC: Theoretical and experimental development[J]. ECS Transactions, 2017, 78(1): 1851-1863. |
61 | YANG B, CHEN X X, GU D G, et al. Effects of slurry composition on the electrolyte support structure and performance of electrolyte-supported planar solid oxide fuel cells[J]. Ceramics International, 2019, 45(2): 1528-1534. |
62 | TIMURKUTLUK B, DOKUYUCU S. The role of tape thickness on mechanical properties and performance of electrolyte supports in solid oxide fuel cells[J]. Ceramics International, 2018, 44(14): 17399-17406. |
63 | ZHU X B, LÜ Z, WEI B, et al. A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods[J]. Journal of Power Sources, 2011, 196(2): 729-733. |
64 | YU F Y, XIAO J, LEI L B, et al. Effects of doping alumina on the electrical and sintering performances of yttrium-stabilized-zirconia[J]. Solid State Ionics, 2016, 289: 28-34. |
65 | BAO W T, ZHU W, ZHU G Y, et al. Dense YSZ electrolyte films prepared by modified electrostatic powder coating[J]. Solid State Ionics, 2005, 176(7/8): 669-674. |
66 | CHIEN A C, CHUANG S S C. Effect of gas flow rates and Boudouard reactions on the performance of Ni/YSZ anode supported solid oxide fuel cells with solid carbon fuels[J]. Journal of Power Sources, 2011, 196(10): 4719-4723. |
67 | REN C, LIU T, MAO Y T, et al. Effect of casting slurry composition on anode support microstructure and cell performance of MT-SOFCs by phase inversion method[J]. Electrochimica Acta, 2014, 149: 159-166. |
68 | MARCANO D, MAUER G, VAßEN R, et al. Manufacturing of high performance solid oxide fuel cells (SOFCs) with atmospheric plasma spraying (APS) and plasma spray-physical vapor deposition (PS-PVD)[J]. Surface and Coatings Technology, 2017, 318: 170-177. |
69 | WANG Y, LEGOUX J G, NEAGU R, et al. Suspension plasma spray and performance characterization of half cells with NiO/YSZ anode and YSZ electrolyte[J]. Journal of Thermal Spray Technology, 2012, 21(1): 7-15. |
70 | GUPTA M, WEBER A, MARKOCSAN N, et al. Electrochemical performance of plasma sprayed metal supported planar solid oxide fuel cells[J]. ECS Transactions, 2015, 68(1): 1791-1802. |
71 | MUNTS V A, VOLKOVA Y V, ERSHOV M I. Development and testing of the 3D printed plastic ejector prototype for the SOFC anode gas recirculation[C]//2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 2018: 1-5. |
72 | TSAI T I, DU S, DHIR A, et al. Modelling a methane fed solid oxide fuel cell with anode recirculation system[J]. ECS Transactions, 2013, 57(1): 2831-2839. |
73 | 美国西北大学利用3D打印技术制造燃料电池[J]. 电源技术, 2015, 39(3): 435. |
74 | Cell3Ditor project on 3D printing tech for SOFC stacks[J]. Fuel Cells Bulletin, 2016, 2016(10): 12. |
75 | 杨乃涛, 孟秀霞, 祝敬昌, 等. 三维打印具有立体通道蜂窝型固体氧化物燃料电池的方法: CN105355947A[P]. 2016-02-24. |
YANG N T, MENG X X, ZHU J C, et al. Method for three-dimensionally printing honeycomb-type solid oxide fuel cell with three-dimensional channel: CN105355947A[P]. 2016-02-24. | |
76 | 张津津, 于方永, 杨乃涛, 等. 3D打印制备无连接体阳极支撑固体氧化物燃料电池堆的方法: CN108598521B[P]. 2020-07-03. |
ZHANG J J, YU F Y,YANG N T, et al. Method for preparing connector-free positive electrode-supported solid oxide fuel cell stack by 3D printing: CN108598521B[P]. 2020-07-03. | |
77 | NISHIDA R T, BEALE S B, PHAROAH J G. Comprehensive computational fluid dynamics model of solid oxide fuel cell stacks[J]. International Journal of Hydrogen Energy, 2016, 41(45): 20592-20605. |
78 | 张津津, 朱梦梦, 李慧, 等. 水固化3D打印方法及装置: CN110154387A[P]. 2019-08-23. |
ZHANG J J, ZHU M M, LI H, et al. Water-cured 3D printing method and device: CN110154387A[P]. 2019-08-23. |
[1] | 刘庆华, 张赛, 蒋明哲, 王秋实, 邢学奇, 杨虹, 黄峰, LEMMON P John, 缪平. 低成本液流电池储能技术研究[J]. 储能科学与技术, 2019, 8(S1): 60-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||