1 |
SURESH PATIL M, SEO J H, LEE M Y. A novel dielectric fluid immersion cooling technology for Li-ion battery thermal management[J]. Energy Conversion and Management, 2021, 229: 113715.
|
2 |
LISBONA D, SNEE T. A review of hazards associated with primary lithium and lithium-ion batteries[J]. Process Safety and Environmental Protection, 2011, 89(6): 434-442.
|
3 |
李建军, 王莉, 高剑, 等. 动力锂离子电池的安全性控制策略及其试验验证[J]. 汽车安全与节能学报, 2012, 3(2): 151-157.
|
|
LI J J, WANG L, GAO J, et al. Safety control strategy of large format Li-ion batteries and test verification[J]. Journal of Automotive Safety and Energy, 2012, 3(2): 151-157.
|
4 |
陈天雨, 高尚, 冯旭宁, 等. 锂离子电池热失控蔓延研究进展[J]. 储能科学与技术, 2018, 7(6): 1030-1039.
|
|
CHEN T Y, GAO S, FENG X N, et al. Recent progress on thermal runaway propagation of lithium-ion battery[J]. Energy Storage Science and Technology, 2018, 7(6): 1030-1039.
|
5 |
XU J, LAN C J, QIAO Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890.
|
6 |
冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016.
|
|
FENG X N. Thermal runaway initiation and propagation of lithium-ion traction battery for electric vehicle: Test, modeling and prevention[D]. Beijing: Tsinghua University, 2016.
|
7 |
KIZILEL R, SABBAH R, SELMAN J R, et al. An alternative cooling system to enhance the safety of Li-ion battery packs[J]. Journal of Power Sources, 2009, 194(2): 1105-1112.
|
8 |
WU M S, LIU K H, WANG Y Y, et al. Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(1): 160-166.
|
9 |
ZHAO R, ZHANG S J, GU J J, et al. An experimental study of lithium ion battery thermal management using flexible hydrogel films[J]. Journal of Power Sources, 2014, 255: 29-36.
|
10 |
MOHAMMADIAN S K, ZHANG Y W. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles[J]. Journal of Power Sources, 2015, 273: 431-439.
|
11 |
DUH Y S, TSAI M T, KAO C S. Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(1): 983-993.
|
12 |
RUI X Y, FENG X N, WANG H W, et al. Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 199: 117521.
|
13 |
董远夏, 张恒运, 朱佳俊, 等. 车用电池模组热蔓延防护结构的数值仿真研究[J].储能科学与技术, 2021, doi: 10.19799/j.cnki.2095-4239.2021.0514.
|
|
DONG Y, ZHANG H, ZHU J, et al. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module[J]. Energy Storage Science and Technology, 2021, doi: 10.19799/j.cnki.2095-4239.2021.0514.
|
14 |
WANG S Q, LU L G, REN D S, et al. Experimental investigation on the feasibility of heat pipe-based thermal management system to prevent thermal runaway propagation[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(3): doi: 10.1115/1.4042555.
|
15 |
WILKE S, SCHWEITZER B, KHATEEB S, et al. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: An experimental study[J]. Journal of Power Sources, 2017, 340: 51-59.
|
16 |
SHAH K, CHALISE D, JAIN A. Experimental and theoretical analysis of a method to predict thermal runaway in Li-ion cells[J]. Journal of Power Sources, 2016, 330: 167-174.
|
17 |
董缇, 彭鹏, 曹文炅, 等. 锂离子电池热管理和安全性研究[J]. 新能源进展, 2019, 7(1): 50-59.
|
|
DONG T, PENG P, CAO W J, et al. Research on thermal management and safety of Li-ion batteries[J]. Advances in New and Renewable Energy, 2019, 7(1): 50-59.
|
18 |
KARALE C M, BHAGWAT S S, RANADE V V. Flow and heat transfer in serpentine channels[J]. AIChE Journal, 2013, 59(5): 1814-1827.
|
19 |
赵春荣, 曹文炅, 董缇, 等. 圆柱形锂离子电池模组微通道液冷热模型[J]. 化工学报, 2017, 68(8): 3232-3241.
|
|
ZHAO C R, CAO W J, DONG T, et al. Thermal modeling of cylindrical lithium-ion battery module with micro-channel liquid cooling[J]. CIESC Journal, 2017, 68(8): 3232-3241.
|