1 |
新华社.中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].[2022-1-4].http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
|
|
Xinhua News Agency.Opinions of the CPC Central Committee and the State Council on the complete and accurate implementation of the new development concept and the good work of carbon peaking and carbon neutrality[EB/OL].[2022-1-4].http://www.gov.cn/zhengce/2021-10/24/content_5644613.htm.
|
2 |
梁银林, 刘庆, 钱勇, 等. 压缩空气储能系统研究概述[J]. 东方电气评论, 2020, 34(3): 82-88.
|
|
LIANG Y L, LIU Q, QIAN Y, et al. Overview of the research on compressed air energy storage system[J]. Dongfang Electric Review, 2020, 34(3): 82-88.
|
3 |
OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: Components and operating parameters-A review[J]. Journal of Energy Storage, 2021, 34: doi: 10. 1016/j. est. 2020. 102000.
|
4 |
HÜTTERMANN L, SPAN R. Investigation of storage materials for packed bed cold storages in liquid air energy storage (LAES) systems[J]. Energy Procedia, 2017, 143: 693-698.
|
5 |
陈海生, 刘金超, 郭欢, 等. 压缩空气储能技术原理[J]. 储能科学与技术, 2013, 2(2): 146-151.
|
|
CHEN H S, LIU J C, GUO H, et al. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2013, 2(2): 146-151.
|
6 |
张新敬, 陈海生, 刘金超, 等. 压缩空气储能技术研究进展[J]. 储能科学与技术, 2012, 1(1): 26-40.
|
|
ZHANG X J, CHEN H S, LIU J C, et al. Research progress in compressed air energy storage system: A review[J]. Energy Storage Science and Technology, 2012, 1(1): 26-40.
|
7 |
李莹. 超临界压缩空气储能系统蓄冷材料和换热器的研究[D]. 北京: 北京工业大学, 2019.
|
|
LI Y. Study on the material and heat exchanger of supercritical compressed air energy storage system for cold storage[D]. Beijing: Beijing University of Technology, 2019.
|
8 |
HÜTTERMANN L, SPAN R, MAAS P, et al. Investigation of a liquid air energy storage (LAES) system with different cryogenic heat storage devices[J]. Energy Procedia, 2019, 158: 4410-4415.
|
9 |
刘佳. 超临界空气蓄热蓄冷数值与实验研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2012.
|
|
LIU J. Numerical and experimental study on heat and cold energy storage using supercritical air[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2012.
|
10 |
LIAO Z R, ZHONG H, XU C, et al. Investigation of a packed bed cold thermal storage in supercritical compressed air energy storage systems[J]. Applied Energy, 2020, 269: doi: 10.1016/j.apenergy.2020.115132.
|
11 |
YANG B, BAI F W, WANG Y, et al. Study on standby process of an air-based solid packed bed for flexible high-temperature heat storage: Experimental results and modelling[J]. Applied Energy, 2019, 238: 135-146.
|
12 |
吴玉庭, 宋阁阁, 张灿灿, 等. 超临界压缩空气储能系统蓄冷换热器优化设计[J]. 储能科学与技术, 2021, 10(4): 1374-1379.
|
|
WU Y T, SONG G G, ZHANG C C, et al. Optimal design of packed bed cold storage heat exchangers with solid NaCl particles in supercritical compressed air energy storage system[J]. Energy Storage Science and Technology, 2021, 10(4): 1374-1379.
|
13 |
赵祎. 热管式蓄冷器的设计与热动力学分析[J]. 上海节能, 2019(12): 997-1002.
|
|
ZHAO Y. Design and thermodynamic analysis of heat pipe regenerator[J]. Shanghai Energy Conservation, 2019(12): 997-1002.
|
14 |
苏苗印, 张益, 李晶晶. 盘管式蓄冷器在液化空气储能系统的应用研究[J]. 真空与低温, 2019, 25(3): 209-214.
|
|
SU M Y, ZHANG Y, LI J J. Application of coil regenerator in liquid air energy storage system[J]. Vacuum and Cryogenics, 2019, 25(3): 209-214.
|
15 |
李椿, 王志华, 王建春, 等. 壳管式相变储能换热器性能研究与场协同效应分析[J]. 太阳能学报, 2020, 41(3): 226-233.
|
|
LI C, WANG Z H, WANG J C, et al. Performance study and field synergy analysis of shell and tube phase change energy storage heat exchanger[J]. Acta Energiae Solaris Sinica, 2020, 41(3): 226-233.
|
16 |
ERMIS K, EREK A, DINCER I. Heat transfer analysis of phase change process in a finned-tube thermal energy storage system using artificial neural network[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3163-3175.
|
17 |
AMIN N A M, BELUSKO M, BRUNO F, et al. Optimising PCM thermal storage systems for maximum energy storage effectiveness[J]. Solar Energy, 2012, 86(9): 2263-2272.
|