1 |
RADZIEMSKA E. The effect of temperature on the power drop in crystalline silicon solar cells[J]. Renewable Energy, 2003, 28(1): 1-12.
|
2 |
DUBEY S, SARVAIYA J N, SESHADRI B. Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world-A review[J]. Energy Procedia, 2013, 33: 311-321.
|
3 |
RODRIGUES E M G, MELÍCIO R, MENDES V M F, et al. Simulation of a solar cell considering single-diode equivalent circuit mode[J]. Renewable Energy and Power Quality Journal, 2011: 369-373.
|
4 |
MAGEED H M A, ZOBAA A F, RAOUF M H A, et al. Temperature effects on the electrical performance of large area multicrystalline silicon solar cells using the current shunt measuring technique[J]. Engineering, 2010, 2(11): 888-894.
|
5 |
TOBNAGHI D M, MADATOV R, NADERI D. The effect of temperature on electrical parameters of solar cells[J]. IJAREEIE, 2013, 2(1): 6404-6407.
|
6 |
SKOPLAKI E, PALYVOS J A. On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations[J]. Solar Energy, 2009, 83(5): 614-624.
|
7 |
KOUNDINYA S, VIGNESHKUMAR N, KRISHNAN A S. Experimental study and comparison with the computational study on cooling of PV solar panel using finned heat pipe technology[J]. Materials Today: Proceedings, 2017, 4(2): 2693-2700.
|
8 |
RABIE R, HASSAN H, AHMED M, et al. Enhancement of concentrator photovoltaic cooling using phase change material by adding bulk over regular configuration[C]//2018 5th International Conference on Renewable Energy: Generation and Applications (ICREGA). February 25-28, 2018, Al Ain, United Arab Emirates. IEEE, 2018: 168-173.
|
9 |
ZHAO B, HU M K, AO X Z, et al. Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module[J]. Solar Energy, 2018, 176: 248-255.
|
10 |
ZHANG H, LIU H W, CHEN H P, et al. Research on the performance of flatbox photovoltaic/thermal collector with cooling channels [J].Sol Energy Eng, 2017, 140: 10-10.
|
11 |
MICHELI L, REDDY K S, MALLICK T K. Thermal effectiveness and mass usage of horizontal micro-fins under natural convection[J]. Applied Thermal Engineering, 2016, 97: 39-47.
|
12 |
IBRAHIM T K, MOHAMMED M N, KAMIL MOHAMMED M, et al. Experimental study on the effect of perforations shapes on vertical heated fins performance under forced convection heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 118: 832-846.
|
13 |
CHIEN L H, CHENG Y T, LAI Y L, et al. Experimental and numerical study on convective boiling in a staggered array of micro pin-fin microgap[J]. International Journal of Heat and Mass Transfer, 2020, 149: doi:10.1016/j.ijheatmasstransfer.2019.119203.
|
14 |
SHAMVEDI D, MCCARTHY O J, O'DONOGHUE E, et al. 3D Metal printed heat sinks with longitudinally varying lattice structure sizes using direct metal laser sintering[J]. Virtual and Physical Prototyping, 2018, 13(4): 301-310.
|
15 |
SUNDAR S, SONG G, ZAHIR M Z, et al. Performance investigation of radial heat sink with circular base and perforated staggered fins[J]. International Journal of Heat and Mass Transfer, 2019, 143: doi:10.1016/j.ijheatmasstransfer.2019.118526.
|
16 |
YEOM T, SIMON T W, NORTH M, et al. High-frequency translational agitation with micro pin-fin surfaces for enhancing heat transfer of forced convection[J]. International Journal of Heat and Mass Transfer, 2016, 94: 354-365.
|
17 |
BALDRY M, TIMCHENKO V, MENICTAS C. Optimal design of a natural convection heat sink for small thermoelectric cooling modules[J]. Applied Thermal Engineering, 2019, 160: doi:10.1016/j.applthermaleng.2019.114062.
|
18 |
ELSHAFEI E A M. Natural convection heat transfer from a heat sink with hollow/perforated circular pin fins[J]. Energy, 2010, 35(7): 2870-2877.
|
19 |
SEE Y S, LEONG K C. Heat transfer study of 3D printed air-cooled heat sinks[C]//13th Int Conf. Heat Transf. Fluid Mech, Thermodyn, 2017: 852-859.
|