储能科学与技术 ›› 2022, Vol. 11 ›› Issue (6): 1968-1979.doi: 10.19799/j.cnki.2095-4239.2021.0697
冯锦新1(), 凌子夜1,2, 方晓明1,2, 张正国1,2()
收稿日期:
2021-12-22
修回日期:
2022-02-02
出版日期:
2022-06-05
发布日期:
2022-06-13
通讯作者:
张正国
E-mail:cejinxin@mail.scut.edu.cn;cezhang@scut.edu.cn
作者简介:
冯锦新(1995—),男,博士研究生,研究方向为相变储热材料,E-mail:cejinxin@mail.scut.edu.cn;
基金资助:
FENG Jinxin1(), LING Ziye1,2, FANG Xiaoming1,2, ZHANG Zhengguo1,2()
Received:
2021-12-22
Revised:
2022-02-02
Online:
2022-06-05
Published:
2022-06-13
Contact:
ZHANG Zhengguo
E-mail:cejinxin@mail.scut.edu.cn;cezhang@scut.edu.cn
摘要:
相变乳液是一种具有高储热密度、良好流动性和优异传热性能的潜热型功能热流体,在热能储存及热管理领域受到广泛关注。本文对相变乳液的研究现状进行了综述,系统性地介绍了相变乳液的类型及其制备方法,重点分析了相变乳液过冷度高、稳定性差的瓶颈问题及其解决策略,并对现有的应用研究进行了归纳。分析表明选用特殊长链乳化剂是降低乳液过冷度的优选方法,提高乳液稳定性需考虑多因素的相互影响。相变乳液在实际应用中展示出比水更高的热能储存容量及更优的冷却性能。预测开发功能化的新型相变乳液,并拓展其应用新领域可能成为未来的发展趋势。
中图分类号:
冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979.
FENG Jinxin, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on phase-change emulsions[J]. Energy Storage Science and Technology, 2022, 11(6): 1968-1979.
1 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN W Z, LING Z Y, FANG X M, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
2 | 孙婉纯, 冯锦新, 张正国, 等. 相变储热技术用于被动式建筑节能的研究进展[J]. 化工进展, 2020, 39(5): 1824-1834. |
SUN W C, FENG J X, ZHANG Z G, et al. Research progress of phase change heat storage technology for passive energy conservation in buildings[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1824-1834. | |
3 | HO C J, LIN K H, RASHIDI S, et al. Experimental study on thermophysical properties of water-based nanoemulsion of n-eicosane PCM[J]. Journal of Molecular Liquids, 2021, 321: doi: 10.1016/j.molliq.2020.114760. |
4 | HO C J, JHENG S R, YANG T F, et al. Thermophysical properties of water-based nano-emulsion of tricosane—An Experimental investigation[J]. Case Studies in Thermal Engineering, 2021, 24: doi:10.1016/j.csite.2021.100849. |
5 | FISCHER L, MURA E, O'NEILL P, et al. Thermophysical properties of a phase change dispersion for cooling around 50 ℃[J]. International Journal of Refrigeration, 2020, 119: 410-419. |
6 | KAUFFELD M, GUND S. Ice slurry-history, current technologies and future developments[J]. International Journal of Refrigeration, 2019, 99: 264-271. |
7 | ZHANG P, MA Z W, WANG R Z. An overview of phase change material slurries: MPCS and CHS[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 598-614. |
8 | QIU Z Z, MA X L, LI P, et al. Micro-encapsulated phase change material (MPCM) slurries: Characterization and building applications[J]. Renewable and Sustainable Energy Reviews, 2017, 77: 246-262. |
9 | 石李明, 王文俊, 李伯耿, 等. 相变乳液的制备、性能与应用[J]. 材料科学与工程学报, 2013, 31(1): 142-147. |
SHI L M, WANG W J, LI B G, et al. Preparation, property and application of phase change material emulsions[J]. Journal of Materials Science and Engineering, 2013, 31(1): 142-147. | |
10 | WANG F X, LIN W Z, LING Z Y, et al. A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
11 | HO C J, HSU S T, JANG J H, et al. Experimental study on thermal performance of water-based nano-PCM emulsion flow in multichannel heat sinks with parallel and divergent rectangular mini-channels[J]. International Journal of Heat and Mass Transfer, 2020, 146: doi:10.1016/j.ijheatmasstransfer.2019.118861. |
12 | SIVAPALAN B, CHANDRAN M N, MANIKANDAN S, et al. Paraffin wax-water nanoemulsion: A superior thermal energy storage medium providing higher rate of thermal energy storage per unit heat exchanger volume than water and paraffin wax[J]. Energy Conversion and Management, 2018, 162: 109-117. |
13 | O'NEILL P, FISCHER L, REVELLIN R, et al. Phase change dispersions: A literature review on their thermo-rheological performance for cooling applications[J]. Applied Thermal Engineering, 2021, 192: doi:10.1016/j.applthermaleng.2021.116920. |
14 | ZHANG W P, QIN Y B, GAO Z H, et al. Phase behavior and stability of nano-emulsions prepared by D phase emulsification method[J]. Journal of Molecular Liquids, 2019, 285: 424-429. |
15 | XIANG N, YUAN Y P, SUN L L, et al. Simultaneous decrease in supercooling and enhancement of thermal conductivity of paraffin emulsion in medium temperature range with graphene as additive[J]. Thermochimica Acta, 2018, 664: 16-25. |
16 | ZHANG Z L, YUAN Y P, ZHANG N, et al. Experimental investigation on thermophysical properties of capric acid-lauric acid phase change slurries for thermal storage system[J]. Energy, 2015, 90: 359-368. |
17 | HUANG L, NOERES P, PETERMANN M, et al. Experimental study on heat capacity of paraffin/water phase change emulsion[J]. Energy Conversion and Management, 2010, 51(6): 1264-1269. |
18 | SHAO J J, DARKWA J, KOKOGIANNAKIS G. Development of a novel phase change material emulsion for cooling systems[J]. Renewable Energy, 2016, 87: 509-516. |
19 | 邹得球, 肖睿, 冯自平, 等. 一种适合潜热输送的高温相变石蜡乳状液的热性能[J]. 功能材料, 2012, 43(1): 84-87. |
ZOU D Q, XIAO R, FENG Z P, et al. Thermal performance of high melting points paraffin emulsions for latent heat transportation[J]. Journal of Functional Materials, 2012, 43(1): 84-87. | |
20 | ZHANG Z L, YUAN Y P, ZHANG N, et al. Thermophysical properties of some fatty acids/surfactants as phase change slurries for thermal energy storage[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2495-2501. |
21 | CHEN J, ZHANG P. Preparation and characterization of nano-sized phase change emulsions as thermal energy storage and transport media[J]. Applied Energy, 2017, 190: 868-879. |
22 | PORRAS M, SOLANS C, GONZÁLEZ C, et al. Studies of formation of W/O nano-emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249(1/2/3): 115-118. |
23 | CABALEIRO D, AGRESTI F, BARISON S, et al. Development of paraffinic phase change material nanoemulsions for thermal energy storage and transport in low-temperature applications[J]. Applied Thermal Engineering, 2019, 159: doi:10.1016/j.applthermaleng.2019.113868. |
24 | MANIKANDAN S, RAJAN K S. New hybrid nanofluid containing encapsulated paraffin wax and sand nanoparticles in propylene glycol-water mixture: Potential heat transfer fluid for energy management[J]. Energy Conversion and Management, 2017, 137: 74-85. |
25 | FISCHER L J, DHULIPALA S, VARANASI K K. Phase change dispersion made by condensation-emulsification[J]. ACS Omega, 2021, 6(50): 34580-34595. |
26 | MEI Z, XU J, SUN D J. O/W nano-emulsions with tunable PIT induced by inorganic salts[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 375(1/2/3): 102-108. |
27 | ZIA A, PENTZER E, THICKETT S, et al. Advances and opportunities of oil-in-oil emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 38845-38861. |
28 | DELGADO-SÁNCHEZ C, CUADRI A A, NAVARRO F J, et al. Formulation and processing of novel non-aqueous polyethylene glycol-in-silicone oil (o/o) phase change emulsions[J]. Solar Energy Materials and Solar Cells, 2021, 221: doi: 10.1016/j.solmat.2020.110898. |
29 | DELGADO-SÁNCHEZ C, PARTAL P, MARTÍN-ALFONSO M J, et al. Role of crystallinity on the thermal and viscous behaviour of polyethylene glycol-in-silicone oil (o/o) phase change emulsions[J]. Journal of Industrial and Engineering Chemistry, 2021, 103: 348-357. |
30 | ALLOUCHE J. Synthesis of organic and bioorganic nanoparticles: An overview of the preparation methods[M]//Nanomaterials: A Danger or a Promise? London: Springer London, 2012: 27-74. |
31 | WANG F X, FANG X M, ZHANG Z G. Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176: 381-390. |
32 | KENTISH S, WOOSTER T J, ASHOKKUMAR M, et al. The use of ultrasonics for nanoemulsion preparation[J]. Innovative Food Science & Emerging Technologies, 2008, 9(2): 170-175. |
33 | KACI M, MEZIANI S, ARAB-TEHRANY E, et al. Emulsification by high frequency ultrasound using piezoelectric transducer: Formation and stability of emulsifier free emulsion[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1010-1017. |
34 | JADHAV A J, HOLKAR C R, KAREKAR S E, et al. Ultrasound assisted manufacturing of paraffin wax nanoemulsions: Process optimization[J]. Ultrasonics Sonochemistry, 2015, 23: 201-207. |
35 | SOLANS C, SOLÉ I. Nano-emulsions: Formation by low-energy methods[J]. Current Opinion in Colloid & Interface Science, 2012, 17(5): 246-254. |
36 | KOMAIKO J S, MCCLEMENTS D J. Formation of food-grade nanoemulsions using low-energy preparation methods: A review of available methods[J]. Comprehensive Reviews in Food Science and Food Safety, 2016, 15(2): 331-352. |
37 | MCCLEMENTS D J. Edible nanoemulsions: Fabrication, properties, and functional performance[J]. Soft Matter, 2011, 7(6): 2297-2316. |
38 | MORIMOTO T, KAWANA Y, SAEGUSA K, et al. Supercooling characteristics of phase change material particles within phase change emulsions[J]. International Journal of Refrigeration, 2019, 99: 1-7. |
39 | KAWANAMI T, TOGASHI K, FUMOTO K, et al. Thermophysical properties and thermal characteristics of phase change emulsion for thermal energy storage media[J]. Energy, 2016, 117: 562-568. |
40 | GÜNTHER E, HUANG L, MEHLING H, et al. Subcooling in PCM emulsions-Part 2: Interpretation in terms of nucleation theory[J]. Thermochimica Acta, 2011, 522(1/2): 199-204. |
41 | RHAFIKI T E, KOUSKSOU T, JAMIL A, et al. Crystallization of PCMs inside an emulsion: Supercooling phenomenon[J]. Solar Energy Materials and Solar Cells, 2011, 95(9): 2588-2597. |
42 | GOLEMANOV K, TCHOLAKOVA S, DENKOV N D, et al. Selection of surfactants for stable paraffin-in-water dispersions, undergoing solid-liquid transition of the dispersed particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(8): 3560-3569. |
43 | HAGELSTEIN G, GSCHWANDER S. Reduction of supercooling in paraffin phase change slurry by polyvinyl alcohol[J]. International Journal of Refrigeration, 2017, 84: 67-75. |
44 | SAKAI T, NAKAGAWA Y, IIJIMA K. Hexadecane-in-water emulsions as thermal-energy storage and heat transfer fluids: Connections between phase-transition temperature and period of hexadecane droplets dispersed in hexadecane-in-water emulsions and characteristics of surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 394-402. |
45 | LU W, TASSOU S A. Experimental study of the thermal characteristics of phase change slurries for active cooling[J]. Applied Energy, 2012, 91(1): 366-374. |
46 | AGRESTI F, FEDELE L, ROSSI S, et al. Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications[J]. Solar Energy Materials and Solar Cells, 2019, 194: 268-275. |
47 | ZHANG X Y, NIU J L, WU J Y. Evaluation and manipulation of the key emulsification factors toward highly stable PCM-water nano-emulsions for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 219: doi:10.1016/j.solmat.2020.110820. |
48 | MORIMOTO T, KUMANO H. Nucleation promoting effect of fat shell on phase change material particles dispersed in an emulsion for thermal energy storage medium[J]. Journal of Energy Storage, 2020, 31: doi:10.1016/j.est.2020.101637. |
49 | HUANG L, PETERMANN M, DOETSCH C. Evaluation of paraffin/water emulsion as a phase change slurry for cooling applications[J]. Energy, 2009, 34(9): 1145-1155. |
50 | IACOB-TUDOSE E T, MAMALIGA I, IOSUB A V. TES nanoemulsions: A review of thermophysical properties and their impact on system design[J]. Nanomaterials (Basel, Switzerland), 2021, 11(12): 3415. |
51 | ZHANG G H, YU Z J, CUI G M, et al. Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity[J]. Renewable Energy, 2020, 151: 542-550. |
52 | ZHANG X Y, NIU J L, WU J Y. Development and characterization of novel and stable silicon nanoparticles-embedded PCM-in-water emulsions for thermal energy storage[J]. Applied Energy, 2019, 238: 1407-1416. |
53 | ZHANG X Y, NIU J L, ZHANG S, et al. PCM in water emulsions: Supercooling reduction effects of nano-additives, viscosity effects of surfactants and stability[J]. Advanced Engineering Materials, 2015, 17(2): 181-188. |
54 | GÜNTHER E, SCHMID T, MEHLING H, et al. Subcooling in hexadecane emulsions[J]. International Journal of Refrigeration, 2010, 33(8): 1605-1611. |
55 | HUANG L, GÜNTHER E, DOETSCH C, et al. Subcooling in PCM emulsions—part 1: Experimental[J]. Thermochimica Acta, 2010, 509(1/2): 93-99. |
56 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: doi: 10.1016/j.apenergy.2020.115808. |
57 | BARISON S, CABALEIRO D, ROSSI S, et al. Paraffin-graphene oxide hybrid nano emulsions for thermal management systems[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: doi:10.1016/j.colsurfa.2021.127132. |
58 | FENG J X, HUANG J C, LING Z Y, et al. Performance enhancement of a photovoltaic module using phase change material nanoemulsion as a novel cooling fluid[J]. Solar Energy Materials and Solar Cells, 2021, 225: doi:10.1016/j.solmat.2021.111060. |
59 | LIU L, NIU J L, WU J Y. Formulation of highly stable PCM nano-emulsions with reduced supercooling for thermal energy storage using surfactant mixtures[J]. Solar Energy Materials and Solar Cells, 2021, 223: doi: 10.1016/j.solmat.2021.110983. |
60 | WANG F X, GUO J X, LI S H, et al. Facile self-assembly approach to construct a novel MXene-decorated nano-sized phase change material emulsion for thermal energy storage[J]. Ceramics International, 2022, 48(4): 4722-4731. |
61 | 侯长军, 刘勇, 霍丹群, 等. 具有良好稳定性的石蜡乳液的制备及改进[J]. 应用化工, 2010, 39(2): 175-178, 181. |
HOU C J, LIU Y, HUO D Q, et al. Preparation and improvement of paraffin emulsion with good stability[J]. Applied Chemical Industry, 2010, 39(2): 175-178, 181. | |
62 | GSCHWANDER S, NIEDERMAIER S, GAMISCH S, et al. Storage capacity in dependency of supercooling and cycle stability of different PCM emulsions[J]. Applied Sciences, 2021, 11(8): 3612. |
63 | ZOU D Q, FENG Z P, XIAO R, et al. Preparation and flow characteristic of a novel phase change fluid for latent heat transfer[J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2292-2297. |
64 | 朱升干, 郑典模, 张晓婕, 等. 响应面分析法优化乳化石蜡制备工艺[J]. 化学工程, 2010, 38(6): 87-90. |
ZHU S G, ZHENG D M, ZHANG X J, et al. Optimization of preparation technology for paraffin emulsion via response surface methodology[J]. Chemical Engineering (China), 2010, 38(6): 87-90. | |
65 | PUUPPONEN S, SEPPÄLÄ A, VARTIA O, et al. Preparation of paraffin and fatty acid phase changing nanoemulsions for heat transfer[J]. Thermochimica Acta, 2015, 601: 33-38. |
66 | DANOV K D, KRALCHEVSKA S D, KRALCHEVSKY P A, et al. Mixed solutions of anionic and zwitterionic surfactant (Betaine): Surface-tension isotherms, adsorption, and relaxation kinetics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(13): 5445-5453. |
67 | MCCLEMENTS D J, JAFARI S M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review[J]. Advances in Colloid and Interface Science, 2018, 251: 55-79. |
68 | VILASAU J, SOLANS C, GÓMEZ M J, et al. Stability of oil-in-water paraffin emulsions prepared in a mixed ionic/nonionic surfactant system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389(1/2/3): 222-229. |
69 | 黎宇坤, 马素德, 唐国翌. 对一种新型相变微乳液的物理性质及稳定性的研究[J]. 功能材料, 2010, 41(10): 1813-1815. |
LI Y K, MA S D, TANG G Y. Research on physical properties and stability of phase change microemulsion[J]. Journal of Functional Materials, 2010, 41(10): 1813-1815. | |
70 | WANG F X, LIU J, FANG X M, et al. Graphite nanoparticles-dispersed paraffin/water emulsion with enhanced thermal-physical property and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2016, 147: 101-107. |
71 | WANG F X, LING Z Y, FANG X M, et al. Optimization on the photo-thermal conversion performance of graphite nanoplatelets decorated phase change material emulsions[J]. Solar Energy Materials and Solar Cells, 2018, 186: 340-348. |
72 | ZHAO Q H, YANG W B, ZHANG H P, et al. Graphene oxide Pickering phase change material emulsions with high thermal conductivity and photo-thermal performance for thermal energy management[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 42-49. |
73 | POLLERBERG C, DOTSCH C. Phase changing slurries in cooling and cold supply networks:In 10th International Symposium on Disctrict Heating and Cooling, 2006[C]. Germany : Hannover,2006. |
74 | LIU L, LI J, NIU J L, et al. Evaluation of the energy storage performance of PCM nano-emulsion in a small tubular heat exchanger[J]. Case Studies in Thermal Engineering, 2021, 26: doi:10.1016/j.csite.2021.101156. |
75 | LIU L, ZHANG X Y, LIANG H B, et al. Cooling storage performance of a novel phase change material nano-emulsion for room air-conditioning in a self-designed pilot thermal storage unit[J]. Applied Energy, 2022, 308: doi:10.1016/j.apenergy.2021.118405. |
76 | LIANG H B, LIU L, ZHONG Z W, et al. Towards idealized thermal stratification in a novel phase change emulsion storage tank[J]. Applied Energy, 2022, 310: doi: 10.1016/j.apenergy.2022.118526. |
77 | DELGADO M, LÁZARO A, MAZO J, et al. Experimental analysis of a low cost phase change material emulsion for its use as thermal storage system[J]. Energy Conversion and Management, 2015, 106: 201-212. |
78 | DELGADO M, LÁZARO A, MAZO J, et al. Experimental analysis of a coiled stirred tank containing a low cost PCM emulsion as a thermal energy storage system[J]. Energy, 2017, 138: 590-601. |
79 | 王方娴. 高性能微/纳米相变乳液的制备、特性及其应用研究[D]. 广州: 华南理工大学, 2019. |
WANG F X. Researches on preparation, characteristics and applications of high-performance micro/nano-sized phase change material emulsions[D]. Guangzhou: South China University of Technology, 2019. | |
80 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: doi: 10.1016/j.energy.2020.118215. |
81 | CAO J H, FENG J X, FANG X M, et al. A delayed cooling system coupling composite phase change material and nano phase change material emulsion[J]. Applied Thermal Engineering, 2021, 191: doi:10.1016/j.applthermaleng.2021.116888. |
82 | LI Q, QIAO G, MURA E, et al. Experimental and numerical studies of a fatty acid based phase change dispersion for enhancing cooling of high voltage electrical devices[J]. Energy, 2020, 198: doi:10.1016/j.energy.2020.117280. |
83 | LI Q, MURA E, LI C, et al. Shape stability and flow behaviour of a phase change material based slurry in coupled fluid-thermo-electrical fields for electronic device cooling[J]. Applied Thermal Engineering, 2020, 173: doi:10.1016/j.applthermaleng.2020.115117. |
84 | LI Q, FISCHER L, QIAO G, et al. High performance cooling of a HVDC converter using a fatty acid ester-based phase change dispersion in a heat sink with double-layer oblique-crossed ribs[J]. International Journal of Energy Research, 2020, 44(7): 5819-5840. |
85 | FISCHER L, MURA E, QIAO G, et al. HVDC converter cooling system with a phase change dispersion[J]. Fluids, 2021, 6(3): 117. |
86 | YANG N X, WANG J, XU S W, et al. A comparative assessment of the battery liquid-cooling system employing two coolants: Phase change material emulsion and water[J]. International Journal of Energy Research, 2022, 46(5): 6498-6516. |
[1] | 元佳宇, 李昕光, 王文超, 付程阔. 考虑质量流量的电池组蛇形冷却结构仿真[J]. 储能科学与技术, 2022, 11(7): 2274-2281. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[4] | 肖哲熙, 鲁峰, 林贤清, 张晨曦, 白浩隆, 于春辉, 何姿颖, 姜海容, 魏飞. 气固流化床硅氧碳负极材料的宏量制备[J]. 储能科学与技术, 2022, 11(6): 1739-1748. |
[5] | 刘杭鑫, 陈现涛, 孙强, 赵晨曦. 软包锂离子电池真空环境下循环性能特性[J]. 储能科学与技术, 2022, 11(6): 1806-1815. |
[6] | 柯巧敏, 郭剑, 王亦伟, 曹文炅, 陈满, 蒋方明. 液冷式热管理对动力电池热失控阻隔性能[J]. 储能科学与技术, 2022, 11(5): 1634-1640. |
[7] | 郭铁柱, 周迪, 张传芳. MXenes胶体氧化的调控策略及其对超级电容器性能的影响[J]. 储能科学与技术, 2022, 11(4): 1165-1174. |
[8] | 孙颖, 赵钦, 尹博思, 马天翼. PTCDI//δ-MnO2 水系铵离子电池性能研究[J]. 储能科学与技术, 2022, 11(4): 1110-1120. |
[9] | 胡冶州, 王双, 申涛, 朱叶, 王得丽. 限域型贵金属氧还原反应电催化剂研究进展[J]. 储能科学与技术, 2022, 11(4): 1264-1277. |
[10] | 杜江龙, 林伊婷, 杨雯棋, 练成, 刘洪来. 模拟仿真在锂离子电池热安全设计中的应用[J]. 储能科学与技术, 2022, 11(3): 866-877. |
[11] | 刘迪, 张甜甜, 彭宇维, 唐晓梅, 王丹, 毛承雄. 压缩空气储能系统释能环节轴系建模与振荡分析[J]. 储能科学与技术, 2022, 11(2): 563-572. |
[12] | 朱信龙, 王均毅, 潘加爽, 康传智, 邹燚涛, 杨凯杰, 施红. 集装箱储能系统热管理系统的现状及发展[J]. 储能科学与技术, 2022, 11(1): 107-118. |
[13] | 安治国, 张显, 祝惠, 张春杰. 蜂窝状CPCM/水冷复合式圆柱型锂电池散热性能[J]. 储能科学与技术, 2022, 11(1): 211-220. |
[14] | 徐钿昕, 田希坤, 闫君, 叶强, 赵长颖. TiO2改性的CaCO3热化学储热的反应性能[J]. 储能科学与技术, 2022, 11(1): 1-8. |
[15] | 张晓光, 潘晓楠, 李金铭, 刘丽, 何燕. 电池排布对锂电池组相变热管理性能的影响[J]. 储能科学与技术, 2022, 11(1): 127-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||