1 |
LIU W Y, JIA Z K, LUO Y Q, et al. Experimental investigation on thermal management of cylindrical Li-ion battery pack based on vapor chamber combined with fin structure[J]. Applied Thermal Engineering, 2019, 162: doi: 10.1016/j.applthermaleng.2019. 114272.
|
2 |
TAN M X, GAN Y H, LIANG J L, et al. Effect of initial temperature on electrochemical and thermal characteristics of a lithium-ion battery during charging process[J]. Applied Thermal Engineering, 2020, 177: doi: 10.1016/j.applthermaleng.2020.115500.
|
3 |
ARORA S. Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies[J]. Journal of Power Sources, 2018, 400: 621-640.
|
4 |
CHEN K, WU W X, YUAN F, et al. Cooling efficiency improvement of air-cooled battery thermal management system through designing the flow patter[J]. Energy, 2019, 167: 781-790.
|
5 |
GAO Y, JIANG J C, ZHANG C P, et al. Lithium-ion battery aging mechanisms and life model under different charging stresses[J]. Journal of Power Sources, 2017, 356: 103-114.
|
6 |
LIU H Q, WEI Z B, HE W D, et al. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review[J]. Energy Conversion and Management, 2017, 150: 304-330.
|
7 |
LYU Y F, YANG X Q, LI X X, et al. Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins[J]. Applied Energy, 2016, 178: 376-382.
|
8 |
HE J S, YANG X Q, ZHANG G Z. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering, 2019, 148: 984-991.
|
9 |
AZIZI Y, SADRAMELI S M. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates[J]. Energy Conversion and Management, 2016, 128: 294-302.
|
10 |
WU W X, WANG S F, WU W, et al. A critical review of battery thermal performance and liquid based battery thermal management[J]. Energy Conversion and Management, 2019, 182: 262-281.
|
11 |
WU W X, WU W, WANG S F. Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal Heat and Mass Transfer, 2018, 121: 967-977.
|
12 |
PENG R Q, KONG D P, WEN J, et al. Investigation on thermal management performance of PCM-fin structure for Li-ion battery module in high-temperature environment[J]. Energy Conversion and Management, 2018, 176: 131-146.
|
13 |
HU X S, ZHU F, GONG X L. Experimental and numerical study on the thermal behavior of phase change material infiltrated in low porosity metal foam[J]. Journal of Energy Storage, 2019, 26: doi: 10.1016/j.est.2019.101005.
|
14 |
ZHAO Y Q, JIN L, ZOU B Y, et al. Expanded graphite-paraffin composite phase change materials: Effect of particle size on the composite structure and properties[J]. Applied Thermal Engineering, 2020, 171: doi: 10.1016/j.applthermaleng.2020.115015.
|
15 |
WANG Q Q, ZHOU D, WU Z G, et al. Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites[J]. Renewable Energy, 2020, 147: 1131-1138.
|
16 |
PATRIK S, MUSTAPHA K, IGOR K, et al. Thermal characterization of phase change materials based on linear low-density polyethylene, paraffin wax and expanded graphite[J]. Renewable Energy, 2016, 88: 372-382.
|
17 |
JAVANI N, DINCER I, NATERER G F, et al. Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles[J]. International Journal of Heat and Mass Transfer, 2014, 72: 690-703.
|
18 |
XIE Y Q, TAN J C, SHI S, et al. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials[J]. Energy Conversion and Management, 2017, 154: 562-575.
|
19 |
LYU Y F, LIU G J, ZHANG G Q, et al. A novel thermal management structure using serpentine phase change material coupled with forced air convection for cylindrical battery modules[J]. Journal of Power Sources, 2020, 468: doi: 10.1016/j.jpowsour.2020.228398.
|
20 |
RAO Z H, WANG Q C, HUANG C L. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system[J]. Applied Energy, 2016, 164: 659-669.
|
21 |
WU X Y, ZHU Z H, XU S, et al. Structural optimization of light-weight battery module based on hybrid liquid cooling with high latent heat PCM[J]. International Journal of Heat and Mass Transfer, 2020, 163: doi: 10.1016/j.ijheatmasstransfer.2020.120495.
|
22 |
KONG D P, PENG R Q, DU J, et al. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures[J]. Energy Conversion and Management, 2019, 204: doi:10.1016/j.enconman.2019. 112280.
|
23 |
AN Z G, CHEN X, GAO Z Y, et al. Numerical investigation on integrated thermal management for a lithium-ion battery module with a composite phase change material and liquid cooling[J]. Applied Thermal Engineering, 2019, 163: doi:10.1016/j.applthermaleng. 2019.114345.
|
24 |
BERNARDI D, PAWLIKOWSKI E, NEWMAN J. A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132: 5-12.
|
25 |
CAO J H, LUO M Y, LIN Z Y, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191: doi: 10.1016/j.energy. 2019.116565.
|