1 |
孙玉树, 杨敏, 师长立, 等. 储能的应用现状和发展趋势分析[J]. 高电压技术, 2020, 46(1): 80-89.
|
|
SUN Y S, YANG M, SHI C L, et al. Analysis of application status and development trend of energy storage[J]. High Voltage Engineering, 2020, 46(1): 80-89.
|
2 |
KIM T, SONG W T, SON D Y, et al. Lithium-ion batteries: outlook on present, future, and hybridized technologies[J]. Journal of Materials Chemistry A, 2019, 7(7): 2942-2964.
|
3 |
CHEN W, JIANG J C, WEN J F. Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions[J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(2): 855-863.
|
4 |
FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267.
|
5 |
刘洋, 陶风波, 孙磊, 等. 磷酸铁锂储能电池热失控及其内部演变机制研究[J].高电压技术, 2021, 47(4): 1333-1343.
|
|
LIU Y, TAO F B, SUN L, et al. Research of thermal runaway and internal evolution mechanism of lithium iron phosphate energy storage battery[J]. High Voltage Engineering, 2021, 47(4): 1333-1343.
|
6 |
LIU Y J, DUAN Q L, XU J J, et al. Experimental study on a novel safety strategy of lithium-ion battery integrating fire suppression and rapid cooling[J]. The Journal of Energy Storage, 2020, 28: doi: 10.1016/j.est.2019.101185.
|
7 |
HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns[J]. Journal of Energy Storage, 2019, 25: doi: 10.1016/j.est.2019.100811.
|
8 |
ZHANG J N, ZHANG L, SUN F C, et al. An overview on thermal safety issues of lithium-ion batteries for electric vehicle application[J]. IEEE Access, 2018, 6: 23848-23863.
|
9 |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131.
|
10 |
JINDAL P, BHATTACHARYA J. Review—Understanding the thermal runaway behavior of Li-ion batteries through experimental techniques[J]. Journal of the Electrochemical Society, 2019, 166(10): A2165-A2193.
|
11 |
张亚军, 王贺武, 冯旭宁, 等. 动力锂离子电池热失控燃烧特性研究进展[J]. 机械工程学报, 2019, 55(20): 17-27.
|
|
ZHANG Y J, WANG H W, FENG X N, et al. Research progress on thermal runaway combustion characteristics of power lithiumion batteries[J]. Journal of Mechanical Engineering, 2019, 55(20): 17-27.
|
12 |
FU Y Y, LU S, LI K Y, et al. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter[J]. Journal of Power Sources, 2015, 273: 216-222.
|
13 |
SAID A O, LEE C, LIU X, et al. Simultaneous measurement of multiple thermal hazards associated with a failure of prismatic lithium ion battery[J]. Proceedings of the Combustion Institute, 2018, 37(3): 4173-4180.
|
14 |
RIBIÈRE P, GRUGEON S, MORCRETTE M, et al. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry[J]. Energy & Environmental Science, 2012, 5(1): 5271-5280.
|
15 |
LARSSON F, ANDERSSON P, BLOMQVIST P, et al. Characteristics of lithium-ion batteries during fire tests[J]. Journal of Power Sources, 2014, 271: 414-420.
|
16 |
PENG Y, ZHOU X D, HU Y, et al. A new exploration of the fire behaviors of large format lithium ion battery[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1243-1254.
|
17 |
PING P, WANG Q S, HUANG P F, et al. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test[J]. Journal of Power Sources, 2015, 285: 80-89.
|
18 |
HUANG P F, WANG Q S, LI K, et al. The combustion behavior of large scale lithium titanate battery[J]. Scientific Reports, 2015, 5: doi: 10.1038/srepo7788.
|
19 |
PENG Y, YANG L, JU X, et al. A comprehensive investigation on the thermal and toxic hazards of large format lithium-ion batteries with LiFePO4 cathode[J]. Journal of Hazardous Materials, 2020, 381: doi: 10.1016/j.jhazmat.2019.120916.
|
20 |
LIU P J, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. The Journal of Energy Storage, 2020, 31: doi: 10.1016/j.est.2020.101714.
|
21 |
CHEN M Y, OUYANG D X, WENG J W, et al. Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge[J]. Process Safety and Environmental Protection, 2019, 130: 250-256.
|
22 |
MAO B B, LIU C Q, YANG K, et al. Thermal runaway and fire behaviors of a 300 A·h lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: doi: 10.1016/j.rser.2021.110717.
|
23 |
WANG Q S, LI K, WANG Y, et al. The efficiency of dodecafluoro-2-methylpentan-3-one on suppressing the lithium ion battery fire[J]. Journal of Electrochemical Energy Conversion and Storage, 2018, 15(4): doi: 10.1039/eBRA08908F.
|
24 |
INCROPERA F P. Fundamentals of Heat and Mass Transfer[M]. Wiley, 2011.
|
25 |
ZHANG J B, WU B, LI Z, et al. Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries[J]. Journal of Power Sources, 2014, 259:106-116.
|
26 |
HUANG Z H, ZHAO C P, LI H, et al. Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes[J]. Energy, 2020, 205: doi: 10.1016/j.energy.2020.117906.
|
27 |
FENG X N, SUN J, OUYANG M G, et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module[J]. Journal of Power Sources, 2015, 275: 261-273.
|
28 |
LI H, DUAN Q L, ZHAO C P, et al. Experimental investigation on the thermal runaway and its propagation in the large format battery module with Li(Ni1/3Co1/3Mn1/3)O2 as cathode[J]. Journal of Hazardous Materials, 2019, 375: 241-254.
|