1 |
史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测[J/OL]. 储能科学与技术.(2022-04-02)[2022-05-06]. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0126.
|
|
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery based on WOA-XGBoost[J]. Energy Storage Science and Technology. (2022-04-02) [2022-05-06]. https://esst.cip.com.cn/CN/10.19799/j.cnki.2095-4239.2022.0126.
|
2 |
GE M F, LIU Y B, JIANG X X, et al. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries[J]. Measurement, 2021, 174: doi: 10.1016/j.measurement. 2021.109057.
|
3 |
梁新成, 张勉, 黄国钧. 基于BMS的锂离子电池建模方法综述[J]. 储能科学与技术, 2020, 9(6): 1933-1939.
|
|
LIANG X C, ZHANG M, HUANG G J. Review on lithium-ion battery modeling methods based on BMS[J]. Energy Storage Science and Technology, 2020, 9(6): 1933-1939.
|
4 |
易灵芝, 张宗光, 范朝冬, 等. 基于EEMD-GSGRU的锂电池寿命预测[J]. 储能科学与技术, 2020, 9(5): 1566-1573.
|
|
YI L Z, ZHANG Z G, FAN C D, et al. Life prediction of lithium battery based on EEMD-GSGRU[J]. Energy Storage Science and Technology, 2020, 9(5): 1566-1573.
|
5 |
王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523-1534.
|
|
WANG P, FAN L F, CHENG Z. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523-1534.
|
6 |
FENG X N, WENG C H, HE X M, et al. Online state-of-health estimation for Li-ion battery using partial charging segment based on support vector machine[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8583-8592.
|
7 |
HU X S, CHE Y H, LIN X K, et al. Health prognosis for electric vehicle battery packs: A data-driven approach[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(6): 2622-2632.
|
8 |
简献忠, 韦进, 王如志. 基于RPMDE-MKSVM的锂离子电池剩余使用寿命预测[J]. 控制工程, 2021, 28(4): 665-671.
|
|
JIAN X Z, WEI J, WANG R Z. Remaining useful life prediction of lithium-ion battery based on RPMDE-MKSVM[J]. Control Engineering of China, 2021, 28(4): 665-671.
|
9 |
王瀛洲, 倪裕隆, 郑宇清, 等. 基于ALO-SVR的锂离子电池剩余使用寿命预测[J]. 中国电机工程学报, 2021, 41(4): 1445-1457, 1550.
|
|
WANG Y Z, NI Y L, ZHENG Y Q, et al. Remaining useful life prediction of lithium-ion batteries based on support vector regression optimized and ant lion optimizations[J]. Proceedings of the CSEE, 2021, 41(4): 1445-1457, 1550.
|
10 |
陈峥, 顾青峰, 沈世全, 等. 基于健康特征提取和PSO-RBF神经网络的锂离子电池健康状态预测[J]. 昆明理工大学学报(自然科学版), 2020, 45(6): 92-103.
|
|
CHEN Z, GU Q F, SHEN S Q, et al. State of health prediction for lithium-ion batteries based on health feature extraction and PSO-RBF neural network[J]. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(6): 92-103.
|
11 |
李练兵, 李思佳, 李洁, 等. 基于差分电压和Elman神经网络的锂离子电池RUL预测方法[J]. 储能科学与技术, 2021, 10(6): 2373-2384.
|
|
LI L B, LI S J, LI J, et al. RUL prediction of lithium-ion battery based on differential voltage and Elman neural network[J]. Energy Storage Science and Technology, 2021, 10(6): 2373-2384.
|
12 |
黄鹏, 聂枝根, 陈峥, 等. 基于优化Elman神经网络的锂电池容量预测[J]. 储能科学与技术, 2022, 11(7): 2282-2294.
|
|
HUANG P, NIE Z G, CHEN Z, et al. Capacity prediction of lithium battery based on optimized Elman neural network[J]. Energy Storage Science and Technology, 2022, 11(7): 2282-2294.
|
13 |
杨彦茹, 温杰, 史元浩, 等. 基于CEEMDAN和SVR的锂离子电池剩余使用寿命预测[J]. 电子测量与仪器学报, 2020, 34(12): 197-205.
|
|
YANG Y R, WEN J, SHI Y H, et al. Remaining useful life prediction for lithium-ion battery based on CEEMDAN and SVR[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(12): 197-205.
|
14 |
王英楷, 张红, 王星辉. 基于1DCNN-LSTM的锂离子电池SOH预测[J]. 储能科学与技术, 2022, 11(1): 240-245.
|
|
WANG Y K, ZHANG H, WANG X H. Hybrid 1DCNN-LSTM model for predicting lithium ion battery state of health[J]. Energy Storage Science and Technology, 2022, 11(1): 240-245.
|
15 |
张婷婷, 于明, 李宾, 等. 基于Wavelet降噪和支持向量机的锂离子电池容量预测研究[J]. 电工技术学报, 2020, 35(14): 3126-3136.
|
|
ZHANG T T, YU M, LI B, et al. Capacity prediction of lithium-ion batteries based on wavelet noise reduction and support vector machine[J]. Transactions of China Electrotechnical Society, 2020, 35(14): 3126-3136.
|
16 |
张树凯, 刘正江, 张显库, 等. 基于Douglas-Peucker算法的船舶AIS航迹数据压缩[J]. 哈尔滨工程大学学报, 2015, 36(5): 595-599.
|
|
ZHANG S K, LIU Z J, ZHANG X K, et al. A method for AIS track data compression based on Douglas-Peucker algorithm[J]. Journal of Harbin Engineering University, 2015, 36(5): 595-599.
|
17 |
杨玉婷, 史玉回, 夏顺仁. 基于讨论机制的头脑风暴优化算法[J]. 浙江大学学报(工学版), 2013, 47(10): 1705-1711, 1746.
|
|
YANG Y T, SHI Y H, XIA S R. Discussion mechanism based brain storm optimization algorithm[J]. Journal of Zhejiang University (Engineering Science), 2013, 47(10): 1705-1711, 1746.
|
18 |
马威强, 高永琪, 赵苗. 基于全局最优和差分变异的头脑风暴优化算法[J]. 系统工程与电子技术, 2022, 44(1): 270-278.
|
|
MA W Q, GAO Y Q, ZHAO M. Global-best difference-mutation brain storm optimization algorithm[J]. Systems Engineering and Electronics, 2022, 44(1): 270-278.
|
19 |
LIANG Y, HU S S, GUO W S, et al. Abrasive tool wear prediction based on an improved hybrid difference grey wolf algorithm for optimizing SVM[J]. Measurement, 2022, 187: doi: 10.1016/j.measurement. 2021.110247.
|
20 |
郑方丹, 姜久春, 陈坤龙, 等. 基于数据统计特性的GS-SVM电池峰值功率预测模型[J]. 电力自动化设备, 2017, 37(9): 56-61.
|
|
ZHENG F D, JIANG J C, CHEN K L, et al. Peak power prediction model for batteries based on data statistical characteristic and GS-SVM[J]. Electric Power Automation Equipment, 2017, 37(9): 56-61.
|
21 |
GOEBEL K, SAHA B, SAXENA A, et al. Prognostics in battery health management[J]. IEEE Instrumentation & Measurement Magazine, 2008, 11(4): 33-40.
|
22 |
庞晓琼, 王竹晴, 曾建潮, 等. 基于PCA-NARX的锂离子电池剩余使用寿命预测[J]. 北京理工大学学报, 2019, 39(4): 406-412.
|
|
PANG X Q, WANG Z Q, ZENG J C, et al. Prediction for the remaining useful life of lithium-ion battery based on PCA-NARX[J]. Transactions of Beijing Institute of Technology, 2019, 39(4): 406-412.
|
23 |
梁海峰, 袁芃, 高亚静. 基于CNN-Bi-LSTM网络的锂离子电池剩余使用寿命预测[J]. 电力自动化设备, 2021, 41(10): 213-219.
|
|
LIANG H F, YUAN P, GAO Y J. Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network[J]. Electric Power Automation Equipment, 2021, 41(10): 213-219.
|