1 |
任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738-743.
|
|
REN P, WANG S L, HE M F, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738-743.
|
2 |
刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689-694.
|
|
LIU W X, TIAN X, XIAO J Y, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689-694.
|
3 |
卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657-669.
|
|
LU T, YANG W Q. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657-669.
|
4 |
陈媛, 何怡刚, 李忠. 电池变温度模型似然函数参数辨识及SOC估计[J]. 电子测量与仪器学报, 2019, 33(12): 1-9.
|
|
CHEN Y, HE Y G, LI Z. Battery variable temperature model parameter identification by likelihood estimation and SOC estimation[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(12): 1-9.
|
5 |
GAO B Z, GUO L L, ZHENG Q, et al. Acceleration speed optimization of intelligent EVs in consideration of battery aging[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8009-8018.
|
6 |
李晓杰, 喻云泰, 张志文, 等. 基于电化学老化衰退模型的锂离子动力电池外特性[J]. 物理学报, 2022, 71(3): 038803.
|
|
LI X J, YU Y T, ZHANG Z W, et al. External characteristics of lithium-ion power battery based on electrochemical aging decay model[J]. Acta Physica Sinica, 2022, 71(3): 038803.
|
7 |
CORDOBA-ARENAS A, ONORI S, GUEZENNEC Y, et al. Capacity and power fade cycle-life model for plug-in hybrid electric vehicle lithium-ion battery cells containing blended spinel and layered-oxide positive electrodes[J]. Journal of Power Sources, 2015, 278: 473-483.
|
8 |
王维强, 张力, 张吉, 等. 高低温下LiFePO4电池模型参数辨识与验证[J]. 电源技术, 2019, 43(9): 1464-1466, 1491.
|
|
WANG W Q, ZHANG L, ZHANG J, et al. Identification and verification of LiFePO4 battery model parameters at high and low temperatures[J]. Chinese Journal of Power Sources, 2019, 43(9): 1464-1466, 1491.
|
9 |
冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753.
|
|
FENG Q, LI Q, QUAN W, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753.
|
10 |
VENKATA RAO R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2016: 19-34.
|
11 |
MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
|
12 |
MIRJALILI S. The ant lion optimizer[J]. Advances in Engineering Software, 2015, 83: 80-98.
|
13 |
王毅, 李晓梦, 耿国华, 等. 基于直觉模糊熵的混合粒子群优化算法[J]. 电子学报, 2021, 49(12): 2381-2389.
|
|
WANG Y, LI X M, GENG G H, et al. Hybrid particle swarm optimization algorithm based on intuitionistic fuzzy entropy[J]. Acta Electronica Sinica, 2021, 49(12): 2381-2389.
|
14 |
SAKA M P, HASANÇEBI O, GEEM Z W. Metaheuristics in structural optimization and discussions on harmony search algorithm[J]. Swarm and Evolutionary Computation, 2016, 28: 88-97.
|
15 |
ZHAO Y Z, REN L J, LIN G B, et al. Self-adaptive synergistic optimization for parameters extraction of synchronous reluctance machine nonlinear magnetic model[J]. IEEE Access, 2021, 9: 101741-101754.
|