储能科学与技术 ›› 2022, Vol. 11 ›› Issue (10): 3328-3344.doi: 10.19799/j.cnki.2095-4239.2022.0078

• 储能测试与评价 • 上一篇    下一篇

锂电池SOC估计的实现方法分析与性能对比

黎冲1(), 王成辉1, 王高1, 鲁宗虎2(), 马成智2   

  1. 1.国家能源集团新疆能源有限责任公司,新疆维吾尔自治区 乌鲁木齐 831499
    2.新疆工业云 大数据创新中心有限公司,新疆维吾尔自治区 乌鲁木齐 830026
  • 收稿日期:2022-02-16 修回日期:2022-02-27 出版日期:2022-10-05 发布日期:2022-10-10
  • 通讯作者: 鲁宗虎 E-mail:357851791@qq.com;luzonghu0101@163.com
  • 作者简介:黎 冲(1987—),男,本科,从事锂离子电池状态评估与大规模应用技术研究,E-mail:357851791@qq.com

Review on implementation method analysis and performance comparison of lithium battery state of charge estimation

Chong LI1(), Chenhui WANG1, Gao WANG1, Zonghu LU2(), Chengzhi MA2   

  1. 1.National Energy Group Xinjiang Energy Co. , Ltd. , Wulumuqi 831499, Xinjiang Uyghur Autonomous Region, China
    2.Xinjiang industrial cloud big data Innovation Center Co. , Ltd. , Wulumuqi 830026, Xinjiang Uyghur Autonomous Region, China
  • Received:2022-02-16 Revised:2022-02-27 Online:2022-10-05 Published:2022-10-10
  • Contact: Zonghu LU E-mail:357851791@qq.com;luzonghu0101@163.com

摘要:

锂电池荷电状态(state of charge,SOC)估计技术是保证电力储能和电动汽车合理应用的核心技术,也是锂电池系统控制运营、监测维护的基础。在锂电池实际应用中,其表现出非线性、时变性、影响因素复杂性和不确定性的问题,造成了荷电状态估计难度大、精度不高和适应能力不足。为此,众多锂电池荷电状态估计算法及改进策略应运而生。与此同时,部分研究人员针对不同估计方法和改进策略的实现方式和优缺点开展了分析与对比,但相关综述对估计方法的技术特点和适用性方面的论述不足且缺乏系统性总结。本文首先分析了锂电池荷电状态估计的影响因素和测试标准;然后从基于实验计算的传统方法、基于电池模型的滤波类算法、基于数据驱动的机器学习技术以及数模混合估计方法四个方面开展对比分析,归纳总结各类方法的技术特点、实现过程、适用条件、难题痛点以及应用优势,系统全面地论述了现有锂电池荷电状态估计技术的研究重点和应用现状;最后,展望了锂电池荷电状态估计算法的未来研究方向。

关键词: 锂电池荷电状态估计, 实验计算方法, 滤波估计算法, 机器学习技术, 数模驱动

Abstract:

The lithium battery state of charge (SOC) estimation technology is the core technology to ensure the reasonable application of electric energy storage and electric vehicles, as well as the control, operation, monitoring, and maintenance of lithium battery systems. It demonstrates the problems of nonlinearity, time variability, complexity, and uncertainty of influencing factors in the practical application of lithium batteries, thereby resulting in the difficulty, low accuracy, and insufficient adaptability of the state of charge estimation. As a result, numerous lithium battery state of charge estimation algorithms and improvement strategies have emerged. At the same time, some researchers have analyzed and compared the implementation methods, advantages, and disadvantages of various estimation methods, and improvement strategies, but the relevant review lacks a systematic summary and insufficient discussion on the technical characteristics and applicability of estimation methods. To begin, this paper examines the influencing factors and test standards of lithium battery state of charge estimation. Next, the traditional methods based on experimental calculation, filtering algorithms based on battery model, data-driven machine learning technology, and digital-analog hybrid estimation methods are compared and analyzed, as well as technical characteristics, implementation process, applicable conditions, problems, pain points, and application advantages. The research focus and application status of the existing state of charge estimation technology for lithium batteries are systematically and comprehensively discussed. Finally, future research directions for lithium battery state of charge estimation algorithms are proposed.

Key words: SOC estimation of lithium battery, experimental calculation method, filter estimation algorithm, machine learning technology, data-model hybrid drive

中图分类号: