1 |
ANSELMA P G, KOLLMEYER P, LEMPERT J, et al. Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation[J]. Applied Energy, 2021, 285: doi: 10.1016/j.apenergy.2021.116440.
|
2 |
WANG H M, SHI W J, HU F, et al. Over-heating triggered thermal runaway behavior for lithium-ion battery with high nickel content in positive electrode[J]. Energy, 2021, 224: doi: 10.1016/j.energy.2021.120072.
|
3 |
朱鸿章, 吴传平, 周天念, 等. 磷酸铁锂和三元锂电池外部过热条件下的热失控特性[J]. 储能科学与技术, 2022, 11(1): 201-210.
|
|
ZHU H Z, WU C P, ZHOU T N, et al. Thermal runaway characteristics of LiFePO4 and ternary lithium batteries with external overheating[J]. Energy Storage Science and Technology, 2022, 11(1): 201-210.
|
4 |
HANNAN M A, AL-SHETWI A, BEGUM R A, et al. The value of thermal management control strategies for battery energy storage in grid decarbonization: Issues and recommendations[J]. Journal of Cleaner Production, 2020, 276: doi: 10.1016/j.jclepro.2020.124223.
|
5 |
ZHANG Y T, ZUO W, E J Q, et al. Performance comparison between straight channel cold plate and inclined channel cold plate for thermal management of a prismatic LiFePO4 battery[J]. Energy, 2022, 248: doi: 10.1016/j.energy.2022.123637.
|
6 |
刘彬, 胡子强, 李夔宁, 等. 基于大平板热管的电池热管理实验及仿真[J]. 储能科学与技术, 2021, 10(4): 1364-1373.
|
|
LIU B, HU Z Q, LI K N, et al. Experimental and simulation on battery thermal management based on a large flat heat pipe[J]. Energy Storage Science and Technology, 2021, 10(4): 1364-1373.
|
7 |
YUE Q L, HE C X, WU M C, et al. Advances in thermal management systems for next-generation power batteries[J]. International Journal of Heat and Mass Transfer, 2021, 181: doi: 10.1016/j.ijheatmasstransfer.2021.121853.
|
8 |
NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143: 257-262.
|
9 |
SHARMA D K, PRABHAKAR A. A review on air cooled and air centric hybrid thermal management techniques for Li-ion battery packs in electric vehicles[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016/j.est.2021.102885.
|
10 |
LUO J, ZOU D Q, WANG Y S, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review[J]. Chemical Engineering Journal, 2022, 430: doi: 10.1016/j.cej.2021.132741.
|
11 |
王海民, 王寓非, 胡峰. 石墨-石蜡复合相变材料的圆柱型动力电池组热管理性能[J]. 储能科学与技术, 2021, 10(1): 210-217.
|
|
WANG H M, WANG Y F, HU F. Thermal management performance of cylindrical power batteries made of graphite paraffin composite phase change materials[J]. Energy Storage Science and Technology, 2021, 10(1): 210-217.
|
12 |
刘丽辉, 莫雅菁, 孙小琴, 等. 板式相变储能单元的蓄热特性及其优化[J]. 储能科学与技术, 2020, 9(6): 1784-1789.
|
|
LIU L H, MO Y J, SUN X Q, et al. Thermal storage characteristics and optimization of plate-type phase change energy storage unit[J]. Energy Storage Science and Technology, 2020, 9(6): 1784-1789.
|
13 |
WANG Y W, JIANG J M, CHUNG Y H, et al. Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(5): 2891-2901.
|
14 |
LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409.
|
15 |
WU S Q, LAO L, WU L, et al. Effect analysis on integration efficiency and safety performance of a battery thermal management system based on direct contact liquid cooling[J]. Applied Thermal Engineering, 2022, 201: doi: 10.1016/j.applthermaleng.2021.117788.
|
16 |
E J Q, XU S J, DENG Y W, et al. Investigation on thermal performance and pressure loss of the fluid cold-plate used in thermal management system of the battery pack[J]. Applied Thermal Engineering, 2018, 145: 552-568.
|
17 |
王翔, 徐晶, 丁亚军, 等. 基于VCALB的电池模组液冷管道优化设计[J]. 储能科学与技术, 2022, 11(2): 547-552.
|
|
WANG X, XU J, DING Y J, et al. Optimal design of liquid cooling pipeline for battery module based on VCALB[J]. Energy Storage Science and Technology, 2022, 11(2): 547-552.
|
18 |
AN Z J, JIA L, LI X J, et al. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel[J]. Applied Thermal Engineering, 2017, 117: 534-543.
|
19 |
WANG C, ZHANG G Q, LI X X, et al. Experimental examination of large capacity LiFePO4 battery pack at high temperature and rapid discharge using novel liquid cooling strategy[J]. International Journal of Energy Research, 2018, 42(3): 1172-1182.
|
20 |
罗卜尔思. 电动汽车动力电池直接接触式液冷系统的研究[D]. 广州: 华南理工大学, 2016.
|
|
LUO B. Research of electric vehicle liquid cooling system which directly contact with battery pack[D]. Guangzhou: South China University of Technology, 2016.
|
21 |
WANG Y B, RAO Z, LIU S C, et al. Evaluating the performance of liquid immersing preheating system for lithium-ion battery pack[J]. Applied Thermal Engineering, 2021, 190: doi: 10.1016/j.applthermaleng.2021.116811.
|
22 |
WANG H T, TAO T, XU J, et al. Thermal performance of a liquid-immersed battery thermal management system for lithium-ion pouch batteries[J]. Journal of Energy Storage, 2022, 46: doi: 10.1016/j.est.2021.103835.
|