储能科学与技术 ›› 2014, Vol. 3 ›› Issue (2): 164-169.doi: 10.3969/j.issn.2095-4239.2014.02.011

• 专家讲座 • 上一篇    下一篇

液流电池理论与技术----旁路电流模型与控制技术

李明华, 范永生, 李冰洋, 王保国   

  1. 清华大学化学工程系,北京 100084
  • 收稿日期:2014-01-27 出版日期:2014-03-01 发布日期:2014-03-01
  • 通讯作者: 王保国,教授,从事膜材料,储能科学与技术研究,E-mail:bgwang@tsinghua.edu.cn.
  • 作者简介:李明华(1977--),女,博士后,从事全钒液流电池模型研究,E-mail:liminghua0501@gmail.com;
  • 基金资助:
    国家自然科学基金(21276134); 国家高技术研究发展计划(2012AA051203)项目

Theoretical and technological aspects of flow batteries:Shunt current formation and control

LI Minghua, FAN Yongsheng, LI Bingyang, WANG Baoguo   

  1. Department of Chemical Engineering,Tsinghua University,Beijing 100084,China
  • Received:2014-01-27 Online:2014-03-01 Published:2014-03-01

摘要: 全钒液流电池(VFB)的电堆由若干单电池叠合在一起组成,通过公共流道和电解液分配管路连通多个单电池,电堆内部的电势差引起电解液中的离子定向迁移,形成旁路电流导致能量损耗.本文分析产生旁路电流和能量损耗的电堆结构机制,利用等效电路模型计算电堆内部旁路电流的分布,提出抑制和减小旁路电流的措施.通过设计合理的电解液流动管路,能够有效减缓旁路电流的影响,减小充电/放电循环过程的电荷损失,提高储能过程的能量效率.

关键词: 全钒液流电池, 旁路电流, 交叉放电, 模拟计算

Abstract: All-vanadium redox flow batteries (VFBs) are made of a series of single cells connected in parallel and packaged into a stack. A common channel connects single cells and distributes positive or negative electrolyte into each cell. Due to the electric potential in the stack, vanadium ions migrate along a specific direction in the positive or negative electrolyte that flows through the common channel, leading to the formation of shunt current and hence energy loss. This paper analyses the causes of shunt current formation, develops a mathematical model based on the analyses, and provides strategies to constrain the formation of shunt current. It is found that the formation of shunt current and hence the associated energy loss can be effectively reduced through a proper design of the flow channels.

Key words: all-vanadium redox flow battery, shunt current, cross-over reaction, modeling

中图分类号: