储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1110-1130.doi: 10.19799/j.cnki.2095-4239.2022.0696

• 储能材料与器件 • 上一篇    下一篇

微胶囊相变储能材料的合成及其应用研究进展

张琦(), 刘重阳, 宋俊, 张雪龄, 李银雷, 栗艳芳   

  1. 郑州轻工业大学能源与动力工程学院,河南 郑州 459001
  • 收稿日期:2022-11-25 修回日期:2023-01-26 出版日期:2023-04-05 发布日期:2023-05-08
  • 通讯作者: 张琦 E-mail:1990922zhangqi@zzuli.edu.cn
  • 作者简介:张琦(1990—),女,博士,讲师,研究方向为相变储能技术及其在太阳能领域、建筑节能领域、冷链运输领域、热泵系统、生物医疗领域的应用,E-mail:1990922zhangqi@zzuli.edu.cn
  • 基金资助:
    国家自然科学基金青年基金项目(51906230);河南省科技攻关项目(212102210007)

Progress in synthesis and application of microcapsule phase-change materials

Qi ZHANG(), Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI   

  1. College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou 459001, Henan, China
  • Received:2022-11-25 Revised:2023-01-26 Online:2023-04-05 Published:2023-05-08
  • Contact: Qi ZHANG E-mail:1990922zhangqi@zzuli.edu.cn

摘要:

由于大部分能源通过热能的形式被使用,故在实际应用中提高热能利用率显得尤为重要。相变材料作为一种热能储能介质,通过其储存或释放潜热的特性,可以实现能源的高效利用,进而降低二氧化碳的排放。但是在实际应用中相变材料存在一定的局限性,如过冷现象、低导热率、泄漏和腐蚀问题等。微胶囊相变储能材料(又称为相变微胶囊)是通过一定的封装技术将相变材料包裹在内,从而避免相变材料发生泄漏,可通过对壳材的改性实现更高的机械强度、热稳定性和导热性能。从微观尺度上相变微胶囊可分为微米级和纳米级微胶囊。随着微胶囊相变材料在热能储存领域的广泛应用,越来越多的研究者对其进行深入开发和应用。本文从相变微胶囊的合成材料、制备方法和应用领域等方面进行详细综述,重点介绍相变微胶囊的芯材和壳材的种类及其优缺点;分析相变微胶囊的制备方法及其应用与发展,如电喷雾技术和喷雾干燥法等物理法,乳液聚合法、细乳液聚合法、原位聚合法和界面聚合法等化学法,以及凝聚法和溶胶-凝胶法等物理化学法;最后阐述了相变微胶囊在建筑、调温纺织品和太阳能利用等领域的应用现状及前景。

关键词: 热能储存, 相变微胶囊, 芯材与壳材, 相变材料

Abstract:

Thermal energy is the most used form of energy, and thus, it is important to improve its utilization rate in practical applications. Phase-change materials are a thermal energy storage medium that can achieve a high utilization rate of energy by storing or releasing latent heat, thus reducing the emission of carbon dioxide. However, phase-change materials have certain limitations, such as subcooling, low thermal conductivity, liquid leakage, and corrosion problems, in practical applications. These materials can be wrapped by a certain packaging technology to prepare microcapsules in order to avoid any liquid leakage. Modification of shell materials can result in better mechanical strength, improved thermal stability, and high thermal conductivity. Phase-change microcapsules can be categorized into micron and nanomicrocapsules at the microscopic scale. Numerous scholars have studied the preparation and application of phase-change microcapsules in the field of thermal energy storage. Thus, this article presents a detailed review of the synthetic materials, preparation methods, and application fields of phase-change microcapsules, focusing on the types of core and shell materials and their advantages and disadvantages. In addition, this review emphasizes preparation methods such as physical methods (electrohydrodynamic encapsulation, spray drying method), chemical methods (emulsion polymerization, mini-emulsion polymerization, in situ polymerization and interfacial polymerization), and physical-chemical methods (coacervation and sol-gel method). Finally, the review introduces and prospects the application of phase-change microcapsules in the fields of construction, temperature-controlled textiles, and solar energy utilization.

Key words: thermal energy storage, phase change microcapsules, core and shell materials, phase change material

中图分类号: