储能科学与技术 ›› 2023, Vol. 12 ›› Issue (4): 1110-1130.doi: 10.19799/j.cnki.2095-4239.2022.0696
收稿日期:
2022-11-25
修回日期:
2023-01-26
出版日期:
2023-04-05
发布日期:
2023-05-08
通讯作者:
张琦
E-mail:1990922zhangqi@zzuli.edu.cn
作者简介:
张琦(1990—),女,博士,讲师,研究方向为相变储能技术及其在太阳能领域、建筑节能领域、冷链运输领域、热泵系统、生物医疗领域的应用,E-mail:1990922zhangqi@zzuli.edu.cn。
基金资助:
Qi ZHANG(), Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI
Received:
2022-11-25
Revised:
2023-01-26
Online:
2023-04-05
Published:
2023-05-08
Contact:
Qi ZHANG
E-mail:1990922zhangqi@zzuli.edu.cn
摘要:
由于大部分能源通过热能的形式被使用,故在实际应用中提高热能利用率显得尤为重要。相变材料作为一种热能储能介质,通过其储存或释放潜热的特性,可以实现能源的高效利用,进而降低二氧化碳的排放。但是在实际应用中相变材料存在一定的局限性,如过冷现象、低导热率、泄漏和腐蚀问题等。微胶囊相变储能材料(又称为相变微胶囊)是通过一定的封装技术将相变材料包裹在内,从而避免相变材料发生泄漏,可通过对壳材的改性实现更高的机械强度、热稳定性和导热性能。从微观尺度上相变微胶囊可分为微米级和纳米级微胶囊。随着微胶囊相变材料在热能储存领域的广泛应用,越来越多的研究者对其进行深入开发和应用。本文从相变微胶囊的合成材料、制备方法和应用领域等方面进行详细综述,重点介绍相变微胶囊的芯材和壳材的种类及其优缺点;分析相变微胶囊的制备方法及其应用与发展,如电喷雾技术和喷雾干燥法等物理法,乳液聚合法、细乳液聚合法、原位聚合法和界面聚合法等化学法,以及凝聚法和溶胶-凝胶法等物理化学法;最后阐述了相变微胶囊在建筑、调温纺织品和太阳能利用等领域的应用现状及前景。
中图分类号:
张琦, 刘重阳, 宋俊, 张雪龄, 李银雷, 栗艳芳. 微胶囊相变储能材料的合成及其应用研究进展[J]. 储能科学与技术, 2023, 12(4): 1110-1130.
Qi ZHANG, Chongyang LIU, Jun SONG, Xueling ZHANG, Yinlei LI, Yanfang LI. Progress in synthesis and application of microcapsule phase-change materials[J]. Energy Storage Science and Technology, 2023, 12(4): 1110-1130.
表3
相变微胶囊不同制备方法的适用条件和优缺点"
类别 | 制备方法 | 适用条件 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
物理法 | 电流体动力喷雾技术 | 适合制备液体为芯材的相变微胶囊 | 大规模生产,具有良好的控制尺寸 | 包封率不高 | [ |
喷雾干燥法 | 适合制备芯材为石蜡的相变微胶囊 | 操作简单、适合工业生产、生产率高 | 投资费用高、包封率低 | [ | |
化学法 | 乳液聚合法 | 适合制备芯材为不溶于水相的单体,常用以制备纳米相变胶囊 | 聚合速率高,制备的相变微胶囊尺寸较小,生产品质高 | 过程难以控制,从表面活性剂中纯化聚合物,产品的杂质残留较高 | [ |
细乳液聚合法 | 适用于制备烷烃为芯材的纳米相变胶囊 | 能量输入少,稳定性高 | 不可使用挥发性溶剂 | [ | |
界面聚合法 | 适用于制备水溶性芯材和油溶性芯材的相变微胶囊 | 高封装率,良好的耐机械性能,制备工艺简单 | 热性能较低,可靠性差,制备的相变微胶囊尺寸多为微米级 | [ | |
原位聚合法 | 常制备油性芯材的相变微胶囊 | 制备成本低,良好的化学和热稳定性 | 可溶性单体是必需的,而聚合物是不可溶的,常用有毒壳材 | [ | |
物理化学法 | 凝聚法 | 适合制备芯材为脂类或石蜡的相变微胶囊 | 具有两种方法 | 容易凝聚成块 | [ |
溶胶-凝胶法 | 常制备烷烃和无机化合物为芯材,二氧化硅为壳的相变微胶囊 | 各种外壳材料的导热性高 | 制备过程相对复杂 | [ |
1 | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[N]. 人民日报, 2021-10-25. |
2 | WANG F X, LIN W Z, LING Z Y, et al. A comprehensive review on phase change material emulsions: Fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
3 | DU P X, LIU C H, FANG B, et al. Experimental investigation on the stability and heat transfer enhancement of modified mircoencapsulated phase change materials and latent functionally thermal fluids[J]. Journal of Energy Storage, 2021, 41: doi: 10.1016 /j.est.2021.102846. |
4 | ZHAI D X, HE Y Y, ZHANG X X, et al. Preparation, morphology, and thermal performance of microencapsulated phase change materials with a MF/SiO2 composite shell[J]. Energy & Fuels, 2020, 34(12): 16819-16830. |
5 | ZHU S L, NGUYEN M T, YONEZAWA T. Micro- and nano-encapsulated metal and alloy-based phase-change materials for thermal energy storage[J]. Nanoscale Advances, 2021, 3(16): 4626-4645. |
6 | LIU H, WANG X D, WU D Z, et al. Fabrication and applications of dual-responsive microencapsulated phase change material with enhanced solar energy-storage and solar photocatalytic effectiveness[J]. Solar Energy Materials and Solar Cells, 2019, 193: 184-197. |
7 | JI J, LIANG L, XU H, et al. Facile solvent evaporation synthesis of core-shell structured Al@PVDF nanoparticles with excellent corrosion resistance and combustion properties[J]. Combustion and Flame, 2022, 238: doi: 10.1016/j.combustflame.2021.111925. |
8 | KONUKLU Y, AKAR H B. Promising palmitic acid/poly(allyl methacrylate) microcapsules for thermal management applications[J]. Energy, 2023, 262: doi: 10.1016/j.energy.2022.125491. |
9 | JIANG R J, XU L L, WU N. Preparation and characterization of acrylic resin encapsulated n-dodecanol microcapsule phase change material[J]. Materials Research Express, 2020, 7(9): doi: 10.1088/2053-1591/abb2cc. |
10 | MO B Z, MO S P, JIA L S, et al. Microencapsulation of ethanol-soluble inorganic salts for high temperature thermal energy storage[J]. Materials Chemistry and Physics, 2022, 275: doi: 10.1016/j.matchemphys.2021.125261. |
11 | HUO X N, LI W, WANG Y, et al. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation[J]. Carbohydrate Polymers, 2018, 200: 602-610. |
12 | SIERRA V, CHEJNE F. Energy saving evaluation of microencapsulated phase change materials embedded in building systems[J]. Journal of Energy Storage, 2022, 49: doi: 10.1016/j.est.2022.104102. |
13 | IQBAL K, KHAN A, SUN D M, et al. Phase change materials, their synthesis and application in textiles—A review[J]. The Journal of the Textile Institute, 2019, 110(4): 625-638. |
14 | ZHENG H F, TIAN G J, YANG C W, et al. Experimental study on performance of phase change microcapsule cold storage solar composite refrigeration system[J]. Renewable Energy, 2022, 198: 1176-1185. |
15 | YUAN H M, BAI H, ZHANG X, et al. Synthesis and characterization of stearic acid/silicon dioxide nanoencapsules for solar energy storage[J]. Solar Energy, 2018, 173: 42-52. |
16 | ZHAO Q H, YANG W B, LI Y S, et al. Multifunctional phase change microcapsules based on graphene oxide Pickering emulsion for photothermal energy conversion and superhydrophobicity[J]. International Journal of Energy Research, 2020, 44(6): 4464-4474. |
17 | YUAN H M, BAI H, LU X, et al. Size controlled lauric acid/silicon dioxide nanocapsules for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 191: 243-257. |
18 | XU B, ZHOU J, NI Z J, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
19 | LI M, LIU J P, SHI J B. Synthesis and properties of phase change microcapsule with SiO2-TiO2 hybrid shell[J]. Solar Energy, 2018, 167: 158-164. |
20 | ZOU L, LI S, LI L, et al. Synthesis of TiO2 shell microcapsule-based phase change film with thermal energy storage and buffering capabilities[J]. Materials Today Sustainability, 2022, 18: doi: 10.1016/j.mtsust.2022.100119. |
21 | ZHAO A Q, AN J L, YANG J L, et al. Microencapsulated phase change materials with composite titania-polyurea (TiO2-PUA) shell[J]. Applied Energy, 2018, 215: 468-478. |
22 | ZHU Y L, QIN Y S, WEI C S, et al. Nanoencapsulated phase change materials with polymer-SiO2 hybrid shell materials: Compositions, morphologies, and properties[J]. Energy Conversion and Management, 2018, 164: 83-92. |
23 | QIN S Y, LI H B, HU C Z. Thermal properties and morphology of chitosan/gelatin composite shell microcapsule via multi-emulsion[J]. Materials Letters, 2021, 291: doi: 10.1016/j.matlet.2021.129475. |
24 | KARAIPEKLI A, ERDOĞAN T, BARLAK S. The stability and thermophysical properties of a thermal fluid containing surface-functionalized nanoencapsulated PCM[J]. Thermochimica Acta, 2019, 682: doi: 10.1016/j.tca.2019.178406. |
25 | SANGJUN P, CHAIYASAT A. Poly(L-lactic acid)-based microcapsule containing phase-change material: Influence of polymer shell on particle morphology[J]. Fibers and Polymers, 2020, 21(5): 935-943. |
26 | BAKESHLOU Z, NIKFARJAM N. Thermoregulating papers containing fabricated microencapsulated phase change materials through Pickering emulsion templating[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20253-20268. |
27 | SUN K, LIU H, WANG X D, et al. Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell[J]. Applied Energy, 2019, 237: 549-565. |
28 | FREDI G, DIRÈ S, CALLONE E, et al. Docosane-organosilica microcapsules for structural composites with thermal energy storage/release capability[J]. Materials (Basel, Switzerland), 2019, 12(8): doi: 10.3390/ma12081286. |
29 | WANG J H, ZHAI X Y, ZHONG Z R, et al. Nanoencapsulated n-tetradecane phase change materials with melamine-urea-formaldehyde-TiO2 hybrid shell for cold energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636: doi: 10.1016/j.colsurfa.2021.128162. |
30 | YU A Q, SONG X Y, LU W, et al. Facile and safety synthesis of highly loaded phase change microcapsules with paraffin/butyl stearate core and their feasible application in polymer composite[J]. Solar Energy Materials and Solar Cells, 2022, 247: doi: 10.1016/j.solmat.2022.111955. |
31 | KAHRAMAN DÖĞÜŞCÜ D, KıZıL Ç, BIÇER A, et al. Microencapsulated n-alkane eutectics in polystyrene for solar thermal applications[J]. Solar Energy, 2018, 160: 32-42. |
32 | MERT M S, MERT H H, SERT M. Microencapsulated oleic-capric acid/hexadecane mixture as phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(4): 1551-1561. |
33 | 王俊霞, 王军, 黄崇杏, 等. 多壁碳纳米管/硬脂酸-十八醇@脲醛树脂微胶囊的制备及表征[J]. 复合材料学报, 2019, 36(3): 730-738. |
WANG J X, WANG J, HUANG C X, et al. Preparation and characterization of MWCNTs/stearic acid-octadecyl alcohol@urea formaldehyde resin phase change microencapsules[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 730-738. | |
34 | ÁLVAREZ-BERMÚDEZ O, ADAM-CERVERA I, AGUADO-HERNÁNDIZ A, et al. Magnetic polyurethane microcarriers from nanoparticle-stabilized emulsions for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(49): 17956-17966. |
35 | WANG K C, ZHANG T Y, WANG T Y, et al. Microencapsulation of high temperature metallic phase change materials with SiCN shell[J]. Chemical Engineering Journal, 2022, 436: doi: 10.1016/j.cej.2022.135054. |
36 | 刘志芳. 高储能密度的导热增强型相变储热微胶囊的制备及热特性研究[D]. 广州: 华南理工大学, 2019. |
LIU Z F. Preparation and thermal properties of microencapsulated phase change materials with high heat storage density and enhanced thermal conductivity[D]. Guangzhou: South China University of Technology, 2019. | |
37 | 张青文. 碳酸钙包覆正十九烷相变微胶囊及其热物性研究[D]. 徐州: 中国矿业大学, 2019. |
ZHANG Q W. Study on N-nonadecane/CaCO3 microencapsulated phase change material and its thermal properties[D]. Xuzhou: China University of Mining and Technology, 2019. | |
38 | SAMI S, SADRAMELI S M, ETESAMI N. Thermal properties optimization of microencapsulated a renewable and non-toxic phase change material with a polystyrene shell for thermal energy storage systems[J]. Applied Thermal Engineering, 2018, 130: 1416-1424. |
39 | LI J, LI L J, WANG H C, et al. Microencapsulation of molten salt in titanium shell for high-temperature latent functional thermal fluid[J]. Energy Technology, 2020, 8(12): doi: 10.1002/ente.202000550. |
40 | JIANG Z N, SHU J J, GE Z Q, et al. Preparation and performance of magnetic phase change microcapsules with organic-inorganic double shell[J]. Solar Energy Materials and Solar Cells, 2022, 240: doi: 10.1016/j.solmat.2022.111716. |
41 | ZHANG Y, LI X Y, LI J Q, et al. Solar-driven phase change microencapsulation with efficient Ti4O7 nanoconverter for latent heat storage[J]. Nano Energy, 2018, 53: 579-586. |
42 | GAO Y, GENG X Y, WANG X J, et al. Synthesis and characterization of microencapsulated phase change materials with chitosan-based polyurethane shell[J]. Carbohydrate Polymers, 2021, 273: doi: 10.1016/j.carbpol.2021.118629. |
43 | LV Z H, TANG J W, TIAN Y T, et al. Preparation and characterization of Paraffin@ZnO microcapsule phase-change material by an in situ precipitation method[J]. Energy & Fuels, 2021, 35(21): 17940-17947. |
44 | CHEN Y B, CUI S Q, JIN H, et al. Fabrication of phase change microcapsules with controllable size via regenerated nanochitin stabilized Pickering and their applications for lyocell fiber[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 655: doi: 10.1016/j.colsurfa.2022.130308. |
45 | MA X C, LIU Y J, LIU H, et al. Fabrication of novel slurry containing graphene oxide-modified microencapsulated phase change material for direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2018, 188: 73-80. |
46 | WANG R, KANG Y J, LEI T X, et al. Microcapsules composed of stearic acid core and polyethylene glycol-based shell as a microcapsule phase change material[J]. International Journal of Energy Research, 2021, 45(6): 9677-9684. |
47 | KE W D, WU X W, ZHANG J L. In situ polymerization of organic and inorganic phase change microcapsule and enhancement of infrared stealth via nano iron[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627: doi: 10.1016/j.colsurfa.2021.127124. |
48 | LIU H, WANG X D, WU D Z. Tailoring of bifunctional microencapsulated phase change materials with CdS/SiO2 double-layered shell for solar photocatalysis and solar thermal energy storage[J]. Applied Thermal Engineering, 2018, 134: 603-614. |
49 | 曹金安, 王景平, 徐友龙, 等. 天然可生物降解聚合物壁材在微胶囊中的应用[J/OL]. 材料导报, 2023(18): 1-36. [2023-01-01]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220811.1503.014.html. |
CAO J A, WANG J P, XU Y L, et al. Application of natural biodegradable polymer wall materials in microcapsules[J/OL]. Materials Reports, 2023(18): 1-36. [2023-01-01]. http://kns.cnki.net/kcms/detail/50.1078.TB.20220811.1503.014.html. | |
50 | WANG X G, CHEN Z F, XU W, et al. Capric acid phase change microcapsules modified with graphene oxide for energy storage[J]. Journal of Materials Science, 2019, 54(24): 14834-14844. |
51 | LI S L, DONG B B, WANG J H, et al. Synthesis and characterization of mixed alkanes microcapsules with phase change temperature below ice point for cryogenic thermal energy storage[J]. Energy, 2019, 187: doi: 10.1016/j.energy.2019.115898. |
52 | CHEN Y B, YANG G W, CHEN L Y, et al. Phase change microcapsules with graphene nanoplates embedded polyurea shell for enhanced thermal conductivity[J]. Materials Letters, 2023, 330: doi: 10.1016/j.matlet.2022.133223. |
53 | ZHANG B Y, ZHANG Z, KAPAR S, et al. Microencapsulation of phase change materials with polystyrene/cellulose nanocrystal hybrid shell via Pickering emulsion polymerization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17756-17767. |
54 | 李东昇, 刘雷艮, 吴建兵, 等. 十八烷基聚甲基丙烯酸甲酯相变微胶囊的制备及其表征[J]. 毛纺科技, 2022, 50(10): 64-71. |
LI D S, LIU L G, WU J B, et al. Preparation and characterization of octadecyl PMMA phase change microcapsules[J]. Wool Textile Journal, 2022, 50(10): 64-71. | |
55 | PENG G J, DOU G J, HU Y H, et al. Phase change material (PCM) microcapsules for thermal energy storage[J]. Advances in Polymer Technology, 2020, 2020: 1-20. |
56 | BAO J M, ZOU D Q, ZHU S X, et al. A medium-temperature, metal-based, microencapsulated phase change material with a void for thermal expansion[J]. Chemical Engineering Journal, 2021, 415: doi: 10.1016/j.cej.2021.128965. |
57 | ZHU S X, ZOU D Q, BAO J M, et al. Synthesis and characterization of a novel high durability alloy microcapsule for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2021, 230: doi: 10.1016/j.solmat.2021.111262. |
58 | LI F R, SUN Z C, JIAO S Z, et al. Preparation and performance of dual-functional magnetic phase-change microcapsules[J]. Chemistry, an Asian Journal, 2021, 16(1): 102-109. |
59 | ZHAO Q H, HE F F, ZHANG Q P, et al. Microencapsulated phase change materials based on graphene Pickering emulsion for light-to-thermal energy conversion and management[J]. Solar Energy Materials and Solar Cells, 2019, 203: doi: 10.1016/j.solmat. 2019.110204. |
60 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: doi: 10.1016/j.ijthermalsci.2020.106619. |
61 | LI X, WANG Y B, WANG B J, et al. Antibacterial phase change microcapsules obtained with lignin as the Pickering stabilizer and the reducing agent for silver[J]. International Journal of Biological Macromolecules, 2020, 144: 624-631. |
62 | LIU L, NIU J L, WU J Y. Preparation of stable phase change material emulsions for thermal energy storage and thermal management applications: A review[J]. Materials (Basel, Switzerland), 2021, 15(1): doi: 10.3390/ma15010121. |
63 | CABALEIRO D, AGRESTI F, FEDELE L, et al. Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance[J]. Renewable and Sustainable Energy Reviews, 2022, 159: doi: 10.1016/j.rser.2022.112238. |
64 | FANG Y T, LIU X, LIANG X H, et al. Ultrasonic synthesis and characterization of polystyrene/n-dotriacontane composite nanoencapsulated phase change material for thermal energy storage[J]. Applied Energy, 2014, 132: 551-556. |
65 | ROSTAMI M, YOUSEFI M, KHEZERLOU A, et al. Application of different biopolymers for nanoencapsulation of antioxidants via electrohydrodynamic processes[J]. Food Hydrocolloids, 2019, 97: doi: 10.1016/j.foodhyd.2019.06.015. |
66 | 高立营, 郅慧, 张远军, 等. 相变材料微胶囊的制备与表征分析方法综述[J]. 南京工业大学学报(自然科学版), 2022, 44(6): 624-632. |
GAO L Y, ZHI H, ZHANG Y J, et al. Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(6): 624-632. | |
67 | GIRO-PALOMA J, KONUKLU Y, FERNÁNDEZ A I. Preparation and exhaustive characterization of paraffin or palmitic acid microcapsules as novel phase change material[J]. Solar Energy, 2015, 112: 300-309. |
68 | ŞAHAN N, NIGON D, MANTELL S C, et al. Encapsulation of stearic acid with different PMMA-hybrid shell materials for thermotropic materials[J]. Solar Energy, 2019, 184: 466-476. |
69 | LIANG S E, LI Q B, ZHU Y L, et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion[J]. Energy, 2015, 93: 1684-1692. |
70 | FONSECA G E, MCKENNA T F, DUBÉ M A. Miniemulsion vs. conventional emulsion polymerization for pressure-sensitive adhesives production[J]. Chemical Engineering Science, 2010, 65(9): 2797-2810. |
71 | 刘炎昌, 娄鸿飞, 刘东志, 等. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160. |
LIU Y C, LOU H F, LIU D Z, et al. Preparation and properties of dodecanol microcapsules by interfacial polymerization[J]. Materials Reports, 2021, 35(2): 2157-2160. | |
72 | ZHANG H, SHI Y T, SHENTU B Q, et al. Synthesis and thermal performance of polyurea microcapsulated phase change materials by interfacial polymerization[J]. Polymer Science, Series B, 2017, 59(6): 689-696. |
73 | LI B X, LIU T X, HU L Y, et al. Fabrication and properties of microencapsulated Paraffin@SiO2 phase change composite for thermal energy storage[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(3): 374-380. |
74 | 毛冬宇, 刘红茹, 王晓春, 等. 原位聚合法热致变色微胶囊的制备及性能研究[J]. 化工新型材料, 2021, 49(4): 108-111. |
MAO D Y, LIU H R, WANG X C, et al. Preparation and property of thermochromic microcapsule by in situ polymerization[J]. New Chemical Materials, 2021, 49(4): 108-111. | |
75 | 宋云飞, 娄鸿飞, 吕绪良, 等. 原位聚合法制备微胶囊的研究进展[J]. 化工新型材料, 2018, 46(9): 30-33, 40. |
SONG Y F, LOU H F, LV X L, et al. Advances in preparation of microcapsule by in situ polymerization[J]. New Chemical Materials, 2018, 46(9): 30-33, 40. | |
76 | PETHURAJAN V, SIVAN S. Fabrication, characterisation and heat transfer study on microencapsulation of nano-enhanced phase change material[J]. Chemical Engineering and Processing - Process Intensification, 2018, 133: 12-23. |
77 | ONDER E, SARIER N, CIMEN E H. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics[J]. Thermochimica Acta, 2008, 467(1/2): 63-72. |
78 | HUANG X, ZHU C Q, LIN Y X, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review[J]. Applied Thermal Engineering, 2019, 147: 841-855. |
79 | QIAN T M, DANG B K, CHEN Y P, et al. Fabrication of magnetic phase change n-eicosane @ Fe3O4/SiO2 microcapsules on wood surface via Sol-gel method[J]. Journal of Alloys and Compounds, 2019, 772: 871-876. |
80 | SU W G, DARKWA J, KOKOGIANNAKIS G. Review of solid-liquid phase change materials and their encapsulation technologies[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 373-391. |
81 | TAHAN LATIBARI S, MEHRALI M, MEHRALI M, et al. Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via Sol-gel method[J]. Energy, 2013, 61: 664-672. |
82 | CHEN Z, CAO L, FANG G Y, et al. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials[J]. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(2): 112-123. |
83 | ALEHOSSEINI A, SARABI-JAMAB M, GHORANI B, et al. Electro-encapsulation of Lactobacillus casei in high-resistant capsules of whey protein containing transglutaminase enzyme[J]. LWT, 2019, 102: 150-158. |
84 | ALEHOSSEINI E, JAFARI S M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry[J]. Trends in Food Science & Technology, 2019, 91: 116-128. |
85 | MOGHADDAM M K, MORTAZAVI S M, KHAYAMIAN T. Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method[J]. Journal of Electrostatics, 2015, 73: 56-64. |
86 | YUAN W J, WANG Y P, LI W, et al. Microencapsulation and characterization of polyamic acid microcapsules containing n-octadecane via electrospraying method[J]. Materials Express, 2015, 5(6): 480-488. |
87 | FARIDI ESFANJANI A, JAFARI S M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds[J]. Colloids and Surfaces B: Biointerfaces, 2016, 146: 532-543. |
88 | 公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576. |
GONG X, WANG C Y, ZHU Q Z. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576. | |
89 | 陈新祥. 聚氨酯—植物蜡复合相变材料的制备及其在纺织品中的应用研究[D]. 杭州: 浙江理工大学, 2020. |
CHEN X X. Preparation of polyurethane-plant wax composite phase change materials and its application on txtiles[D]. Hangzhou: Zhejiang Sci-Tech University, 2020. | |
90 | HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74(1/2): 195-202. |
91 | 袁换美. 复合相变储热纳米胶囊的形成机制及性能优化基础研究[D]. 北京: 北京科技大学, 2020. |
YUAN H M. Study on the formation mechanism and performance optimization of the composite phase change nanocapsules for thermal storage[D]. Beijing: University of Science and Technology Beijing, 2020. | |
92 | ZHANG Z, ZHANG Z, CHANG T, et al. Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in situ polymerization[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131164. |
93 | LIU C Z, RAO Z H, ZHAO J T, et al. Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13: 814-826. |
94 | FU W W, LIANG X H, XIE H Z, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. |
95 | LIN X W, ZHANG X L, JI J, et al. Research progress on preparation, characterization, and application of nanoparticle-based microencapsulated phase change materials[J]. International Journal of Energy Research, 2021, 45(7): 9831-9857. |
96 | 朱肖运. 基于界面聚合法制备相变胶囊及其应用研究[D]. 广州: 广东工业大学, 2022. |
ZHU X Y. Preparation of phase change capsules based on interfacial polymerization and its application[D]. Guangzhou: Guangdong University of Technology, 2022. | |
97 | DO J Y, SON N, SHIN J, et al. N-Eicosane-Fe3O4@SiO2@Cu microcapsule phase change material and its improved thermal conductivity and heat transfer performance[J]. Materials & Design, 2021, 198: doi: 10.1016/j.matdes.2020.109357. |
98 | ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review[J]. Energy and Buildings, 2017, 144: 276-294. |
99 | PENG H, ZHANG D, LING X, et al. n-alkanes phase change materials and their microencapsulation for thermal energy storage: A critical review[J]. Energy & Fuels, 2018, 32(7): 7262-7293. |
100 | FANG G, LI H, LIU X, et al. Experimental investigation of performances of microcapsule phase change material for thermal energy storage[J]. Chemical Engineering & Technology, 2010, 33(2): 227-230. |
101 | WANG S, LEI K, WANG Z Y, et al. Metal-based phase change material (PCM) microcapsules/nanocapsules: Fabrication, thermophysical characterization and application[J]. Chemical Engineering Journal, 2022, 438: doi: 10.1016/j.cej.2022.135559. |
102 | ZHANG H F, BALRAM A, TIZNOBAIK H, et al. Microencapsulation of molten salt in stable silica shell via a water-limited Sol-gel process for high temperature thermal energy storage[J]. Applied Thermal Engineering, 2018, 136: 268-274. |
103 | LEE J, JO B. Synthesis and thermal performance of microencapsulated binary carbonate molten salts for solar thermal energy storage[J]. Energy & Fuels, 2021, 35(17): 14130-14139. |
104 | YANG T. The application of nanocapsule phase change material in the construction of civil engineering[J]. Arabian Journal of Geosciences, 2021, 14(11): doi: 10.1007/s12517-021-07296-9. |
105 | LI J, ZHU X Y, WANG H C, et al. Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles[J]. Journal of Materials Science, 2021, 56(3): 2176-2191. |
106 | 张博. 槽式太阳能集热管真空性能无损检测技术及其装置研究[D]. 太原: 中北大学, 2022. |
ZHANG B. Research on nondestructive testing technology and device for vacuum performance of parabolic trough solar receivers[D]. Taiyuan: North University of China, 2022. | |
107 | WANG X N, LI W G, LUO Z Y, et al. A critical review on phase change materials (PCM) for sustainable and energy efficient building: Design, characteristic, performance and application[J]. Energy and Buildings, 2022, 260: doi: 10.1016/j.enbuild. 2022.111923. |
108 | CHENG J J, ZHOU Y, MA D, et al. Preparation and characterization of carbon nanotube microcapsule phase change materials for improving thermal comfort level of buildings[J]. Construction and Building Materials, 2020, 244: doi: 10.1016/j.conbuildmat.2020.118388. |
109 | WANG Y B, LI J W, MIAO W J, et al. Preparation and characterizations of hydroxyapatite microcapsule phase change materials for potential building materials[J]. Construction and Building Materials, 2021, 297: doi: 10.1016/j.conbuildmat. 2021.123576. |
110 | BEYHAN B, CELLAT K, KONUKLU Y, et al. Robust microencapsulated phase change materials in concrete mixes for sustainable buildings[J]. International Journal of Energy Research, 2017, 41(1): 113-126. |
111 | ZHAO J J, ZHOU J H, LI H, et al. Cuprous oxide modified nanoencapsulated phase change materials fabricated by RAFT miniemulsion polymerization for thermal energy storage and photothermal conversion[J]. Powder Technology, 2022, 399: doi: 10.1016/j.powtec.2022.117189. |
112 | XU R, XIA X M, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with Good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: doi: 10.1016/ j.colsurfa.2020.124519. |
113 | GAO Y, ZHANG W H, HAN N, et al. Cotton fabric containing photochromic microcapsules combined thermal energy storage features[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: doi: 10.1016/j.colsurfa. 2022.129249. |
114 | GU M, ZHANG W, HAO S, et al. Ultraviolet light-initiated preparation of phase change material microcapsules and its infrared imaging effect on fabric[J]. Pigment & Resin Technology, 2020, 50(2): 129-135. |
115 | DENG Y X, XU J, LI Y N, et al. Study of the phase-change thermal-storage characteristics of a solar collector[J]. Materials (Basel, Switzerland), 2022, 15(21): doi: 10.3390/ma15217497. |
116 | LIU H, TIAN D L, ZHENG Z H, et al. MXene-decorated magnetic phase-change microcapsules for solar-driven continuous seawater desalination with easy salt accumulation elimination[J]. Chemical Engineering Journal, 2023, 458: doi: 10.1016/j.cej.2023.141395. |
117 | SERALE G, GOIA F, PERINO M. Numerical model and simulation of a solar thermal collector with slurry phase change material (PCM) as the heat transfer fluid[J]. Solar Energy, 2016, 134: 429-444. |
118 | TIAN L T, LIU J Z, WU Z Z, et al. Experimental study on photovoltaic/thermal system performance based on microencapsulated phase change material slurry[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022, 44(2): 4494-4509. |
119 | ZHENG Y, LI X M, ZHANG W J, et al. Experimental study of phase change microcapsule suspensions applied in BIPV construction[J]. Sustainability, 2022, 14(17): doi: 10.3390/su141710819. |
120 | ZHANG Q Q, SUN Z C, GUO Q W, et al. Construction of excellent visible light absorption heat storage slurry using phase change microcapsules for solar thermal utilization[J]. ChemistrySelect, 2022, 7(33): doi: 10.1002/slct.202202124. |
121 | GAO G R, ZHANG T X, JIAO S K, et al. Preparation of reduced graphene oxide modified magnetic phase change microcapsules and their application in direct absorption solar collector[J]. Solar Energy Materials and Solar Cells, 2020, 216: doi: 10.1016/j.solmat.2020.110695. |
122 | ZHANG W, CHENG H, PAN R, et al. Phase change microcapsules with a polystyrene/boron nitride nanosheet hybrid shell for enhanced thermal management of electronics[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(51): 16055-16066. |
123 | CHALCO-SANDOVAL W, FABRA M J, LÓPEZ-RUBIO A, et al. Use of phase change materials to develop electrospun coatings of interest in food packaging applications[J]. Journal of Food Engineering, 2017, 192: 122-128. |
124 | LI F N, WANG X D, WU D Z. Fabrication of multifunctional microcapsules containing n-eicosane core and zinc oxide shell for low-temperature energy storage, photocatalysis, and antibiosis[J]. Energy Conversion and Management, 2015, 106: 873-885. |
125 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
ZHANG F, XU J Q, HUANG X J. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the CSEE, 2017, 37(10): 2905-2912. | |
126 | ZHANG J J, YANG C H, JIN Z G, et al. Experimental study of jet impingement heat transfer with microencapsulated phase change material slurry[J]. Applied Thermal Engineering, 2021, 188: doi: 10.1016/j.applthermaleng.2021.116588. |
127 | ZHANG X Y, WANG X D, WU D Z. Design and synthesis of multifunctional microencapsulated phase change materials with silver/silica double-layered shell for thermal energy storage, electrical conduction and antimicrobial effectiveness[J]. Energy, 2016, 111: 498-512. |
128 | ZHANG M, SHEN H H, QIAN Z Q, et al. Dual-purpose applications of magnetic phase-change microcapsules with crystalline-phase-tunable CaCO3 shell for waste heat recovery and heavy metal ion removal[J]. Journal of Energy Storage, 2022, 55: doi: 10.1016/j.est.2022.105672. |
[1] | 陈红兵, 高雪宁, 刘涛, 王聪聪, 赵瑞, 孙俊辉, 王传岭, 何迪. 应用石蜡/GO复合相变材料的太阳能PV/T系统性能[J]. 储能科学与技术, 2023, 12(3): 661-668. |
[2] | 刘伟, 李振明, 刘铭扬, 杨岑玉, 梅超, 李迎. 高温相变储热材料制备与应用研究进展[J]. 储能科学与技术, 2023, 12(2): 398-430. |
[3] | 沈雪晴, 陈威. 内嵌树形翅片相变层电池热管理性能[J]. 储能科学与技术, 2023, 12(2): 459-467. |
[4] | 董金美, 刘启元, 吴芳, 贾利蕊, 文静, 常成功, 郑卫新, 肖学英. 脂肪酸类二元储能材料的相变特性与配比调节[J]. 储能科学与技术, 2023, 12(2): 349-356. |
[5] | 毛前军, 朱元媛. 新型分叉翅片强化管壳式储能罐储热性能[J]. 储能科学与技术, 2023, 12(1): 69-78. |
[6] | 李沐, 李亚溪, 李传常. 相变储冷技术及其在空调系统中的应用[J]. 储能科学与技术, 2023, 12(1): 180-197. |
[7] | 毛发, 章学来, 华维三. 十二水硫酸铝钾相变蓄热材料研究进展[J]. 储能科学与技术, 2023, 12(1): 120-130. |
[8] | 王君雷, 张第玲, 王昆, 许东东, 徐祥贵, 姚华, 刘文巍, 黄云. 碳酸盐/高炉矿渣定型复合相变储热材料的制备与性能[J]. 储能科学与技术, 2022, 11(9): 3028-3034. |
[9] | 冯锦新, 凌子夜, 方晓明, 张正国. 相变乳液的研究进展[J]. 储能科学与技术, 2022, 11(6): 1968-1979. |
[10] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[11] | 周新宇, 栾道成, 胡志华, 凌俊华, 文科林, 刘浪, 阴志铭, 米书恒, 王正云. 含碳二元系相变储热材料储热性能分析选择[J]. 储能科学与技术, 2022, 11(4): 1175-1183. |
[12] | 李钰颖, 魏雯珍, 李琦, 吴玉庭. 可用于低中温热能储存的四元硝酸盐/埃洛石/石墨定型复合材料的制备与研究[J]. 储能科学与技术, 2022, 11(3): 1044-1051. |
[13] | 张永学, 王梓熙, 鲁博辉, 杨胜旗, 赵泓宇. 雪花型翅片提高相变储热单元储/放热性能[J]. 储能科学与技术, 2022, 11(2): 521-530. |
[14] | 郭云琪, 盛楠, 朱春宇, 饶中浩. 基于模板法制备氧化铝纤维及其石蜡复合相变材料热性能[J]. 储能科学与技术, 2022, 11(2): 511-520. |
[15] | 薛洁, 张军, 杜昭, 胡汝坤, 杨肖虎. 新型平底型相变蓄热器蓄热性能的数值模拟[J]. 储能科学与技术, 2022, 11(12): 3855-3861. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||