储能科学与技术 ›› 2013, Vol. 2 ›› Issue (6): 620-635.doi: 10.3969/j.issn.2095-4239.2013.06.010
郑浩, 高健, 王少飞, 李泓
出版日期:
2013-12-19
发布日期:
2013-12-19
通讯作者:
李泓,研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@iphy.ac.cn.
作者简介:
郑浩(1987--),男,博士研究生,研究方向为锂离子电池薄膜材料及界面输运问题,E-mail:nbzhenghao@gmail.com
基金资助:
ZHENG Hao, GAO Jian, WANG Shaofei, LI Hong
Online:
2013-12-19
Published:
2013-12-19
摘要: 充放电过程中,锂离子需要在电极活性材料,电极与液态电解质接触界面产生固体的电解质层,全固态电池中的固体电解质以及导电添加剂,黏结剂,活性颗粒形成的固固界面传输.一般而言,固相内部及固相之间的离子传输是电池动力学过程中相对较慢的步骤,因此离子在固体中的传输是锂电池材料研究的重要基础科学问题.本文小结了固体离子学基础知识中关于离子在固体中的传输机制,驱动力,影响离子电导率的几种因素等方面的内容,简介了锂离子在正极,负极,固态电解质中的输运特性,讨论了内源锂和外源锂输运特性的差异以及尺寸效应对于离子输运性质的影响.
中图分类号:
郑浩, 高健, 王少飞, 李泓. 锂电池基础科学问题(VI)----离子在固体中的输运[J]. 储能科学与技术, 2013, 2(6): 620-635.
ZHENG Hao, GAO Jian, WANG Shaofei, LI Hong. Fundamental scientific aspects of lithium batteries (VI)--Ionic transport in solids[J]. Energy Storage Science and Technology, 2013, 2(6): 620-635.
[1] Maier J. Physical Chemistry of Ionic Materials:Ions and Electrons in Solids[M]. New Jersey:John Wiley & Sons,2004. [2] Agrawal R,Gupta R. Superionic solid:Composite electrolyte phase An overview[J]. Journal of Materials Science ,1999,34(6):1131-1162. [3] Wang J C,Gaffari M,Choi S. Ionic-conduction in beta-alumina- potential-energy curves and conduction mechanism[J]. Journal of Chemical Physics ,1975,63(2):772-778. [4] Van D V A,Ceder G. Lithium diffusion in layered Li x CoO 2 [J]. Electrochemical and Solid State Letters ,2000,3(7):301-304. [5] Wolf M L. Observation of solitary-wave conduction in a molecular Dynamics simulation of the superionic conductor Li 3 N[J]. Journal of Physics C : Solid State Physics ,1984,17(10):L285-L288. [6] Ihara S,Suzuki K. Molecular-dynamics study of Li 3 N[J]. Physics Letters A ,1985,110(5):265-268. [7] Shi S Q,Lu P,Liu Z Y, et al . Direct calculation of Li-ion transport in the solid electrolyte interphase[J]. Journal of the American Chemical Society ,2012,134(37):15476-15487. [8] Shi S Q,Qi Y,Li H, et al . Defect thermodynamics and diffusion mechanisms in Li 2 CO 3 and implications for the solid electrolyte interphase in Li-ion batteries[J]. Journal of Physical Chemistry C , 2013,117(17):8579-8593. [9] Park M,Zhang X C,Chung M, et al . A review of conduction phenomena in Li-ion batteries[J]. Journal of Power Sources ,2010,195(24):7904-7929. [10] Mehrer H. Diffusion in Solids:Fundamentals, Methods, Materials, Diffusion-Controlled Processes[M]. Berlin:Springer Press,2010. [11] Mclean D. Grain Boundaries in Metals[M]. London:Oxford University Press,1957. [12] Heitjans P,Indris S. Diffusion and ionic conduction in nanocrystalline ceramics[J]. Journal of Physics-Condensed Matter ,2003,15(30):R1257-R1289. [13] Barsoukov A E,Macdonald J R. Impedance Spectroscopy:Theory, Experiment, and Applications[M]. New Jersey:John Wiley & Sons,2005. [14] Dudney N J. Effect of interfacial space-charge polarization on the ionic-conductivity of composite electrolytes[J]. Journal of the American Ceramic Society ,1985,68(10):538-545. [15] UvarovV N F,Isupov V P,Sharma V, et al . Effect of morphology and particle-size on the ionic conductivities of composite solid electrolytes[J]. Solid State Ionics ,1992,51(1-2):41-52. [16] Liang C C. Conduction characteristics of lithium iodide aluminum oxide solid electrolytes[J]. Journal of the Electrochemical Society ,1973,120(10):1289-1292. [17] Bunde A,Dieterich W,Roman E. Dispersed ionic conductors and percolation theory[J]. Physical Review Letters ,1985,55(1):5-8. [18] Jow T,Wagner J B. The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride[J]. Journal of the Electrochemical Society ,1979,126(11):1963-1972. [19] Sato H,Kikuchi R. Cation diffusion and conductivity in solid electrolytes.I[J]. Journal of Chemical Physics ,1971,55(2):677-702. [20] Sato H. Theoretical background for the mixed alkali effect[J]. Solid State Ionics ,1990,40-41(2):725-733. [21] Sato H,Ishikawa T,Funke K. Frequency-dependence of ionic- conductivity in interacting lattice gas systems[J]. Solid State Ionics ,1992,53-56:907-923. [22] Sato H,Datta A. Frequency-dependence of ionic-conductivity in lattice-gas models[J]. Solid State Ionics ,1994,72:19-28. [23] Sato H,Datta A,Ishikawa T. Kinetics of relaxation process of hopping ionic conduction in lattice gas models[J]. Solid State Ionics ,1996,86-88:1319-1323. [24] Funke K. Jump relaxation in solid electrolytes[J]. Progress in Solid State Chemistry ,1993,22(2):111-195. [25] Ngai K L,Jain H. Conductivity relaxation and spin-lattice relaxation in lithium and mixed alkali borate glasses Activation enthalpies, anomalous isotope-mass effect and mixed alkali effect[J]. Solid State Ionics ,1986,18-19:362-367. [26] Cohen M H,Turnbull D. Molecular transport in liquids and glasses[J]. Journal of Chemical Physics ,1959,31(5):1164-1169. [27] Gibbs J H,Dimarzio E A. Nature of the glass transition and the glassy state[J]. Journal of Chemical Physics ,1958,28(3):373-383. [28] Kamaya N,Homma K,Yamakawa Y, et al . A lithium superionic conductor[J]. Nat. Mater. ,2011,10(9):682-686. [29] Wagner C. Equations for transport in solid oxides and sulfides of transition metals[J]. Progress in Solid State Chemistry ,1975,10:3-16. [30] Lee D K,Yoo H I. Electron-ion interference and onsager reciprocity in mixed ionic-electronic transport in TiO 2 [J]. Physical Review Letters ,2006,97(25):255901-255904. [31] Ammundsen B,Rozi R J,Islam M S. Atomistic simulation studies of lithium and proton insertion in spinel lithium manganates[J]. The Journal of Physical Chemistry B ,1997,101(41):8156-8163. [32] Morgan D,Van D V A,Ceder G. Li conductivity in Li x MPO 4 (M= Mn,Fe,Co,Ni)olivine materials[J]. Electrochemical and Solid-State Letters ,2004,7(2):A30-A32. [33] Ouyang C,Shi S,Wang Z, et al . First-principles study of Li-ion diffusion in LiFePO 4 [J]. Physical Review B ,2004,69(10):104303-104307. [34] Van D V A,Ceder G. Lithium diffusion mechanisms in layered intercalation compounds[J]. Journal of Power Sources ,2001,97:529-531. [35] Koyama Y,Tanaka I,Adachi H, et al . First principles calculations of formation energies and electronic structures of defects in oxygen-deficient LiMn 2 O 4 [J]. Journal of the Electrochemical Society ,2003,150(1):A63-A67. [36] Suzuki K,Oumi Y,Takami S, et al . Structural properties of Li x Mn 2 O 4 as investigated by molecular dynamics and density functional theory[J]. Japanese Journal of Applied Physics ,2000,39(7B):4318. [37] Wolverton C,Zunger A. Cation and vacancy ordering in Li x CoO 2 [J]. Physical Review B ,1998,57(4):2242. [38] Goodenough J B. Design considerations[J]. Solid State Ionics ,1994,69(3):184-198. [39] Ouyang X,Lei M,Shi S, et al . First-principles studies on surface electronic structure and stability of LiFePO 4 [J]. Journal of Alloys and Compounds ,2009,476(1):462-465. [40] Maxisch T,Zhou F,Ceder G. An initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies[J]. Physical Review B ,2006,73(10):104301. [41] Sun Y,Lu X,Xiao R, et al . Kinetically controlled lithium-staging in delithiated LiFePO 4 driven by the Fe center mediated interlayer Li-Li interactions[J]. Chemistry of Materials ,2012,24(24):4693-4703. [42] Dokko K,Mohamedi M,Fujita Y, et al . Kinetic characterization of single particles of LiCoO 2 by AC impedance and potential step methods[J]. Journal of the Electrochemical Society ,2001,148(5):A422-A426. [43] Barker J,Pynenburg R,Koksbang R, et al . An electrochemical investigation into the lithium insertion properties of Li x CoO 2 [J]. Electrochimica Acta ,1996,41(15):2481-2488. [44] Levasseur S,Ménétrier M,Delmas C. On the dual effect of Mg doping in LiCoO 2 and Li 1+ δ CoO 2 :Structural, electronic properties, and 7 Li MAS NMR studies[J]. Chemistry of Materials ,2002,14(8):3584-3590. [45] Marzec J,Świerczek K,Przewoźnik J, et al . Conduction mechanism in operating a LiMn 2 O 4 cathode[J]. Solid State Ionics ,2002,146(3):225-237. [46] Molenda J,KuczaW. Transport properties of LiMn 2 O 4 [J]. Solid State Ionics ,1999,117(1):41-46. [47] Saidi M,Barker J,Koksbang R. Thermodynamic and kinetic investigation of lithium insertion in the Li 1- x Mn 2 O 4 spinel phase[J]. Journal of Solid State Chemistry ,1996,122(1):195-199. [48] Cao F,Prakash J. A comparative electrochemical study of LiMn 2 O 4 spinel thin-film and porous laminate[J]. Electrochimica Acta ,2002,47(10):1607-1613. [49] Shi S,Liu L,Ouyang C, et al . Enhancement of electronic conductivity of LiFePO 4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B ,2003,68(19):195108. [50] Xu Y N,Chung SY,Bloking J T, et al . Electronic structure and electrical conductivity of undoped LiFePO 4 [J]. Electrochemical and Solid-State Letters ,2004,7(6):A131-A134. [51] Prosini P P,Lisi M,Zane D, et al . Determination of the chemical diffusion coefficient of lithium in LiFePO 4 [J]. Solid State Ionics ,2002,148(1-2):45-51. [52] Wang C,Hong J. Ionic/electronic conducting characteristics of LiFePO 4 cathode materials the determining factors for high rate performance[J]. Electrochemical and Solid-State Letters ,2007,10(3):A65-A69. [53] Ma J,Wang C,Wroblewski S. Kinetic characteristics of mixed conductive electrodes for lithium ion batteries[J]. Journal of Power Sources ,2007,164(2):849-856. [54] Wu Y,Rahm E,Holze R. Carbon anode materials for lithium ion batteries[J]. Journal of Power Sources ,2003,114(2):228-236. [55] Noel M,Suryanarayanan V. Role of carbon host lattices in Li-ion intercalation/de-intercalation processes[J]. Journal of Power Sources ,2002,111(2):193-209. [56] Zhang S,Xu K,Jow T. Low temperature performance of graphite electrode in Li-ion cells[J]. Electrochimica Acta ,2002,48(3):241-246. [57] Funabiki A,Inaba M,Ogumi Z, et al . Impedance study on the electrochemical lithium intercalation into natural graphite powder[J]. Journal of the Electrochemical Society ,1998,145(1):172-178. [58] Tang X C,Pan C Y,He L P, et al . A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity(RPG)for determination of the diffusion coefficient of intercalary species within insertion-host materials:Theories and experiments[J]. Electrochimica Acta ,2004,49(19):3113-3119. [59] Yang H,Bang H J,Prakash J. Evaluation of electrochemical interface area and lithium diffusion coefficient for a composite graphite anode[J]. Journal of the Electrochemical Society ,2004,151(8):A1247-A1250. [60] Wang Q,Li H,Huang X, et al . Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique[J]. Journal of the Electrochemical Society ,2001,148(7):A737-A741. [61] Levi M,Markevich E,Aurbach D. The effect of slow interfacial kinetics on the chronoamperometric response of composite lithiated graphite electrodes and on the calculation of the chemical diffusion coefficient of Li ions in graphite[J]. The Journal of Physical Chemistry B ,2005,109(15):7420-7427. [62] Nuli Y,Yang J,Jiang Z. Intercalation of lithium ions into bulk and powder highly oriented pyrolytic graphite[J]. Journal of Physics and Chemistry of Solids ,2006,67(4):882-886. [63] Flandrois S,Simon B. Carbon materials for lithium-ion rechargeable batteries[J]. Carbon ,1999,37(2):165-180. [64] Dahn J. Phase diagram of Li x C 6 [J]. Physical Review B ,1991,44(17):9170-9177. [65] Levi M,Aurbach D. Diffusion coefficients of lithium ions during intercalation into graphite derived from the simultaneous measurements and modeling of electrochemical impedance and potentiostatic intermittent titration characteristics of thin graphite electrodes[J]. The Journal of Physical Chemistry B ,1997,101(23):4641-4647. [66] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources ,2006,162(2):1379-1394. [67] Abe K,Miyoshi,Hattori T, et al . Functional electrolytes:Synergetic effect of electrolyte additives for lithium-ion battery[J]. Journal of Power Sources ,2008,184(2):449-455. [68] Otah,Sato T, Suzuki H, et al . TPD-GC/MS analysis of the solid electrolyte interface(SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries[J]. Journal of Power Sources ,2001,97(1):7-13. [69] Aurbach D,Ein-eli Y,Markovsky B, et al . The Study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries II. Graphite electrodes[J]. Journal of the Electrochemical Society ,1995,142(9):2882-2890. [70] Peled E,Golodnitsky D,Ardel G. Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes[J]. Journal of the Electrochemical Society ,1997,144(8):L208-L210. [71] Zaghib K,Simoneau M,Armand M, et al . Electrochemical study of Li 4 Ti 5 O 12 as negative electrode for Li-ion polymer rechargeable batteries[J]. Journal of Power Sources ,1999,81:300-305. [72] Kasavajjula U,Wang C,Appleby A J. Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells[J]. Journal of Power Sources ,2007,163(2):1003-1039. [73] Li H,Huang X J,Chen L Q, et al . The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[J]. Solid State Ionics ,2000,135(1-4):181-191. [74] Sun J,Tang K,Yu X, et al . Overpotential and electrochemical impedance analysis on Cr 2 O 3 thin film and powder electrode in rechargeable lithium batteries[J]. Solid State Ionics ,2008,179(40):2390-2395. [75] Akridge J R,Balkanski M. Solid State Microbatteries[M]. New York:Plenum Publishing Corporation,1988. [76] Wakihara M. Recent developments in lithium ion batteries[J]. Materials Science and Engineering : Reports ,2001,33(4):109-134. [77] Zaghib K,Charest P,Guerfi A, et al . Safe Li-ion polymer batteries for HEV applications[J]. Journal of Power Sources ,2004,134(1):124-129. [78] Knauth P. Ionic conductor composites:Theory and materials[J]. Journal of Electroceramics ,2000,5(2):111-125. [79] Hull S. Superionics:Crystal structures and conduction processes[J]. Reports on Progress in Physics ,2004,67(7):1233-1300. [80] Armand M,Tarascon J M. Building better batteries[J]. Nature ,2008,451:652-657. [81] Quartarone E,Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries:Recent advances and perspectives[J]. Chemical Society Review ,2011,40(5):2525-2540. [82] Wanger C. The theory of the warm-up process[J]. J. Phys. Chem. B ,1933:21-25. [83] Li H,Shi L,Lu W, et al . Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries[J]. Journal of the Electrochemical Society ,2001,148(8):A915-A922. [84] Li H,Shi L,Wang Q, et al . Nano-alloy anode for lithium ion batteries[J]. Solid State Ionics ,2002,148(3):247-258. [85] Liu N,Li H,Wang Z, et al . Origin of solid electrolyte interphase on nanosized LiCoO 2 [J]. Electrochemical and Solid-State Letters ,2006,9(7):A328-A331. [86] Maier J. Nanoionics:Ion transport and electrochemical storage in confined systems[J]. Nat. Mater. ,2005,4(11):805-815. [87] Aric A S,Bruce P,Scrosati B, et al . Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater. ,2005,4(5):366-377. [88] Gibot P,Casas-cabanas M,Laffont L, et al . Room-temperature single-phase Li insertion/extraction in nanoscale Li x FePO 4 [J]. Nat. Mater. ,2008,7(9):741-747. |
[1] | 李海涛, 孔令丽, 张欣, 余传军, 王纪威, 徐琳. N/P设计对高镍NCM/Gr电芯性能的影响[J]. 储能科学与技术, 2022, 11(7): 2040-2045. |
[2] | 刘显茜, 孙安梁, 田川. 基于仿生翅脉流道冷板的锂离子电池组液冷散热[J]. 储能科学与技术, 2022, 11(7): 2266-2273. |
[3] | 陈龙, 夏权, 任羿, 曹高萍, 邱景义, 张浩. 多物理场耦合下锂离子电池组可靠性研究现状与展望[J]. 储能科学与技术, 2022, 11(7): 2316-2323. |
[4] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[5] | 王宇作, 王瑨, 卢颖莉, 阮殿波. 孔结构对软碳负极储锂性能的影响[J]. 储能科学与技术, 2022, 11(7): 2023-2029. |
[6] | 易顺民, 谢林柏, 彭力. 基于VF-DW-DFN的锂离子电池剩余寿命预测[J]. 储能科学与技术, 2022, 11(7): 2305-2315. |
[7] | 祝庆伟, 俞小莉, 吴启超, 徐一丹, 陈芬放, 黄瑞. 高能量密度锂离子电池老化半经验模型[J]. 储能科学与技术, 2022, 11(7): 2324-2331. |
[8] | 裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082. |
[9] | 孔为, 金劲涛, 陆西坡, 孙洋. 对称蛇形流道锂离子电池冷却性能[J]. 储能科学与技术, 2022, 11(7): 2258-2265. |
[10] | 霍思达, 薛文东, 李新丽, 李勇. 基于CiteSpace知识图谱的锂电池复合电解质可视化分析[J]. 储能科学与技术, 2022, 11(7): 2103-2113. |
[11] | 邓健想, 赵金良, 黄成德. 高能量锂离子电池硅基负极黏结剂研究进展[J]. 储能科学与技术, 2022, 11(7): 2092-2102. |
[12] | 欧宇, 侯文会, 刘凯. 锂离子电池中的智能安全电解液研究进展[J]. 储能科学与技术, 2022, 11(6): 1772-1787. |
[13] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[14] | 韩俊伟, 肖菁, 陶莹, 孔德斌, 吕伟, 杨全红. 致密储能:基于石墨烯的方法学和应用实例[J]. 储能科学与技术, 2022, 11(6): 1865-1873. |
[15] | 辛耀达, 李娜, 杨乐, 宋维力, 孙磊, 陈浩森, 方岱宁. 锂离子电池植入传感技术[J]. 储能科学与技术, 2022, 11(6): 1834-1846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||