储能科学与技术 ›› 2014, Vol. 3 ›› Issue (4): 395-405.doi: 10.3969/j.issn.2095-4239.2014.04.013

• 专家讲座 • 上一篇    下一篇

液流电池理论与技术----全钒液流电池的数值模拟分析

廖斯达1, 宋士强1, 张剑波2, 王保国1   

  1. 1清华大学化学工程系,化学工程联合国家重点实验室,北京100084;
    2清华大学汽车工程系,汽车安全与节能国家重点实验室,北京100084
  • 收稿日期:2014-06-09 出版日期:2014-07-01 发布日期:2014-07-01
  • 通讯作者: 王保国,教授,主要研究电化学储能与膜分离技术,E-mail:bgwang@tsinghua.edu.cn.
  • 作者简介:廖斯达(1988--),男,硕士研究生,主要研究方向为液流电池储能技术,E-mail:liaostar@163.com;
  • 基金资助:
    国家自然科学基金(21276134)和国家863项目(2012AA051203)

Simulation of the effects of electrode parameters on all-vanadium redox flow battery performance

LIAO Sida1, SONG Shiqiang1, ZHANG Jianbo2, WANG Baoguo1   

  1. 1State Key Laboratory of Chemical Engineering,Department of Chemical Engineering,Tsinghua University,Beijing 100084,China;
    2Department of Automotive Engineering,Tsinghua University,Beijing 100084,China
  • Received:2014-06-09 Online:2014-07-01 Published:2014-07-01

摘要: 以全钒液流电池为研究对象,利用电池内部传递与反应相耦合的机理模型,模拟电池二维,等温,稳态条件下,电池充电过程电极参数对电池内部极化的影响规律,包括碳毡电极的几何结构参数(厚度Lt和压缩比CR),电学特性参数(比表面积a和电导率)和操作参数(充电电流密度i)的影响.数值模拟结果给出Lt从1.5 mm增至3.5 mm,端电压仅降低3 mV;CR从0.1增至0.5,端电压降低16 mV;a从3.5×104 m2/m3增至3.5×106 m2/m3,端电压降低30 mV;从18.9 S/m增至164.4 S/m,端电压降低87 mV,并给出多孔电极内部过电势在不同条件下不同的二维分布特点;i从100 mA/cm2增至150 mA/cm2,端电压增大57 mV,若同比增大比表面积a,则端电压只增大46 mV.将数值模拟与宏观实验相对比,取得良好的一致性,表明了数值模拟与分析的可靠性.通过增大CR,a,可以明显提高电池性能,为进一步提高电极材料的性能,设计电极结构参数,选择操作参数提供了重要依据.

关键词: 全钒液流电池, 数值模拟, 多孔介质, 电极结构, 压缩比

Abstract: In order to study the all-vanadium redox flow battery (VFB), a mechanistic model is developed based on the transport and reactions to simulate the effects of various electrode parameters on the battery's overall performance and internal polarizations for a VFB charged at isothermal and steady state. The parameters included the carbon felt's geometry structure parameters (thickness Lt, Compression ratio CR), electrical parameters (specific surface area a, electric conductivity) and operating parameter (charging current density i). Numerical simulations showed that when Lt increased from 1.5 mm to 3.5 mm, the terminal voltage drop is 3 mV only; when CR increased from 0.1 to 0.5, the terminal voltage drop is 16 mV; when a increased from 3.5×104 m2·m-3 to 3.5×106 m2·m-3, the terminal voltage drop is 30 mV; when increased from 18.9 S·m-1 to 164.4 S·m-1, the terminal voltage drop is 87 mV, and results also showed different two-dimensional over-potential distribution characteristics under different; when i increased from 100 mA·cm-2 to 150 mA·cm-2, the terminal voltage increase is 57 mV, if proportionally increased a, the terminal voltage increase is 46 mV only. Based on the terminal voltage and the over-potential distribution, the reasons for the effects of various parameters on the battery performance are discussed. The experimental validation showed similar results, which proved the reliability of the numerical simulation. Increasing CR, a and will significantly improve the battery performance. This should provide guidance to parameter design and to improve the performance of electrode material, and the improving of battery performances.

Key words: all-vanadium redox flow battery, numerical simulation, porous media, electrode structure, compression ratio

中图分类号: