储能科学与技术 ›› 2025, Vol. 14 ›› Issue (1): 183-189.doi: 10.19799/j.cnki.2095-4239.2024.0603

• 储能系统与工程 • 上一篇    下一篇

基于BP神经网络结合ERA5数据的风电功率预测

王婷婷1(), 李斯胜2, 于伟1(), 能锋田1, 李星南1, 杨佳琳1, 熊亮2   

  1. 1.中国电建集团北京勘测设计研究院有限公司,北京 100024
    2.中国电建集团国际工程有限公司,北京 100089
  • 收稿日期:2024-07-02 修回日期:2024-07-23 出版日期:2025-01-28 发布日期:2025-02-25
  • 通讯作者: 于伟 E-mail:wangtt@bjy.powerchina.cn;1615869923@qq.com
  • 作者简介:王婷婷(1978—),女,硕士,教授级高级工程师,研究方向为抽水蓄能及新能源,E-mail:wangtt@bjy.powerchina.cn

Wind power prediction based on BP neural network combined with ERA5 data

Tingting WANG1(), Sisheng LI2, Wei YU1(), Fengtian NENG1, Xingnan LI1, Jialin YANG1, Liang XIONG2   

  1. 1.Power China Beijing Engineering Corparationlimited, Beijing 100024, China
    2.Power China International Group Limited, Beijing 100089, China
  • Received:2024-07-02 Revised:2024-07-23 Online:2025-01-28 Published:2025-02-25
  • Contact: Wei YU E-mail:wangtt@bjy.powerchina.cn;1615869923@qq.com

摘要:

随着我国风力发电技术的不断发展和完善,风电在电力系统运行和调度的作用越来越突出。为了高效准确地预测风电功率,减少大量风电入网带来的负面影响,本文基于BP神经网络结合ERA5数据对我国北方某风电场进行风电功率预测,并采用粒子群优化(particle swarm algorithm,PSO)算法优化模型,结合平均绝对误差、均方根误差和Pearson相关系数分析风电功率预测效果。结果表明,模型训练集中预测与实测风电功率变化趋势基本一致,呈现同增同减的趋势,BP模型的平均绝对误差为702.12 W,均方根误差为1000.18 W,相关系数为0.91,PSO-BP模型的平均绝对误差为700.75 W,均方根误差为995.16 W,相关系数为0.94;测试集中ERA5数据在一定程度上高估了风电功率,但整体趋势基本一致,BP模型的平均绝对误差为861.09 W,均方根误差为1150.86 W,相关系数为0.81;PSO-BP模型的平均绝对误差为829.55 W,均方根误差为1117.39 W,相关系数为0.83,模型的预测效果相对较好,PSO-BP模型相较于BP模型的预测效果均有一定程度的提高,在该区域的风电功率预测方面有较好的适用性。研究结果可为缺乏观测数据或观测数据质量不高的地区预测风电功率提供参考。

关键词: 风力发电, BP神经网络, ERA5再分析资料, 粒子群优化算法, 风电功率预测

Abstract:

With the continuous development and improvement of wind power generation technology in China, its significance in power system operation and scheduling is becoming increasingly prominent. To predict wind power efficiently and accurately and reduce the negative impact of a large number of wind power on the grid, this paper focuses on a backpropagation (BP) neural network combined with ERA5 data for wind power prediction of a wind farm in the northern part of China and uses particle swarm optimization (PSO) algorithm to optimize the model, combined with the average absolute error, root mean square error and Pearson correlation coefficient to analyze the effect of wind power prediction. The results showed that the predicted and measured wind power changes in the model training set are the same, exhibiting a similar trend of increase and decrease. The average absolute error of the BP model is 702.12 W, with a root mean square error of 1000.18 W and the correlation coefficient is 0.91, whereas the average absolute error of the PSO-BP model is 700.75 W, with a root mean square error of 995.16 W, and the correlation coefficient is 0.94. The ERA5 data in the test set overestimates the wind power to a certain extent; however, the overall trend remains the same. The average absolute error of the BP model is 861.09W, with a root mean square error of 1150.86W, and the correlation coefficient is 0.81, whereas the average absolute error of the PSO-BP model of 829.55W, with a root mean square error of 1117.39 W, and the correlation coefficient is 0.83, indicating effective modeling. The prediction effect of the PSO-BP model is relatively good, and the PSO-BP model has a certain degree of improvement compared with the BP model, which has good applicability in predicting wind power in this region. The results of this study can provide a reference for the prediction of wind power in areas with limited observational data or where the quality of observational data is not high.

Key words: wind power, BP neural network, ERA5 reanalysis information, particle swarm algorithm, wind power prediction

中图分类号: