储能科学与技术 ›› 2018, Vol. 7 ›› Issue (5): 765-782.doi: 10.12028/j.issn.2095-4239.2018.0083
戴兴建1, 魏鲲鹏1, 张小章1, 姜新建2, 张剀1
收稿日期:
2018-05-31
修回日期:
2018-06-27
出版日期:
2018-09-01
发布日期:
2018-09-01
通讯作者:
戴兴建(1970-),男,副教授,主要研究方向为旋转机械和转子动力学等,E-mail:daixj@mail.tsinghua.edu.cn
作者简介:
戴兴建(1970-),男,副教授,主要研究方向为旋转机械和转子动力学等,E-mail:daixj@mail.tsinghua.edu.cn。
基金资助:
DAI Xingjian1, WEI Kunpeng1, ZHANG Xiaozhang1, JIANG Xinjian2, ZHANG Kai1
Received:
2018-05-31
Revised:
2018-06-27
Online:
2018-09-01
Published:
2018-09-01
Contact:
10.12028/j.issn.2095-4239.2018.0083
摘要: 本文回顾了飞轮储能技术研发50年的历程,分析了飞轮储能技术特点、应用领域以及关键技术问题。飞轮储能具有功率密度高、循环寿命长、响应迅速、能量可观性好以及环境友好的优点。当前,研制的飞轮储能系统单体能量为0.5~130 kW·h,功率为0.3~3000 kW。重点关注了飞轮用低成本高比强度新材料、高温超导磁悬浮技术。飞轮储能在电能质量调控、不间断过渡电源以及电网调频领域实现了商业化应用,在车辆混合动力领域的示范应用中实现节能20%~30%,处于产业应用的临界点。针对电网规模大功率、高能量储能需求,发展趋势是由数十千瓦时以下发展到百千瓦时,并通过阵列化组装成10~100 MW储能系统,放电时间可拓展到1 h。
中图分类号:
戴兴建, 魏鲲鹏, 张小章, 姜新建, 张剀. 飞轮储能技术研究五十年评述[J]. 储能科学与技术, 2018, 7(5): 765-782.
DAI Xingjian, WEI Kunpeng, ZHANG Xiaozhang, JIANG Xinjian, ZHANG Kai. A review on flywheel energy storage technology in fifty years[J]. Energy Storage Science and Technology, 2018, 7(5): 765-782.
[1] AMROUCHE S O, REKIOUA D, REKIOUA T, et al. Overview of energy storage in renewable energy systems[J]. International Journal of Hydrogen Energy, 2016, 41(45):20914-20927. [2] AKINYELE D O, RAYUDU R K. Review of energy storage technologies for sustainable power networks[J]. Sustainable Energy Technologies and Assessments, 2014(8):74-91. [3] 王松岑, 来小康, 程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1):3-8. WANG Songceng, LAI Xiaokang, CHENG Shijie. An analysis of prospects for application of large-scale energy storage technology in power systems[J]. Automation of Electric Power Systems, 2013, 37(1):3-8. [4] 李建林, 田立亭, 来小康. 能源互联网背景下的电力储能技术展望[J]. 电力系统自动化, 2015, 39(23):15-25. LI Jianlin, TIAN Liting, LAI Xiaokang. Outlook of electrical energy storage technologies under energy internet background[J]. Automation of Electric Power Systems, 2015, 39(23):15-25. [5] 许守平, 李相俊, 惠东. 大规模储能系统发展现状及示范应用综述[J]. 电网与清洁能源, 2013, 29(8):94-100. XU Shouping, LI Xiangjun, HUI Dong. A survey of the development and demonstration application of large-scale energy storage[J]. Power System and Clean Energy, 2013, 29(8):94-100. [6] KOUSKSOU T, BRUEL P, JAMIL A, et al. Energy storage:Applications and challenges[J]. Solar Energy Materials & Solar Cells, 2014, 120(1):59-80. [7] BOICEA V A. Energy storage technologies:The past and the present[C]//Proceedings of the IEEE, 2014, 102(11):1777-1794. [8] ARGHANDEH R, PIPATTANASOMPORN M, RAHMAN S. Flywheel energy storage systems for ride-through applications in a facility microgrid[J]. IEEE Transactions on Smart Grid, 2012, 3(4):1955-1962. [9] RIES G, NEUMUELLER H W. Comparison of energy storage in flywheels and SMES[J]. Physica C:Superconductivity, 2001, 357:1306-1310. [10] VAZQUEZ S, LUKIC S M, GALVAN E, et al. Energy storage systems for transport and grid applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12):3881-3895. [11] ZHAO H, WU Q, HU S, et al. Review of energy storage system for wind power integration support[J]. Applied Energy, 2015, 137:545-553. [12] GENTA G. Kinetic energy storage:Theory and practice of advanced flywheel systems[M]. UK:Butterworth-Heinemann, 2014. [13] Electric Power Research Institute (EPRI). Electric energy storage technology options:A white paper primer on applications, costs, and benefits[M]. Beijing:Electric Power Research Institute, 2010. [14] DOUCETTE R T, MCCULLOCH M D. A comparison of high-speed flywheels, batteries, and ultracapacitors on the bases of cost and fuel economy as the energy storage system in a fuel cell based hybrid electric vehicle[J]. Journal of Power Sources, 2011, 196(3):1163-1170. [15] BROWN D R, CHVALA W D. Flywheel energy storage:An alternative to batteries for UPS systems[J]. Energy Engineering, 2005, 102(5):7-26. [16] DHAND A, PULLEN K. Review of flywheel based internal combustion engine hybrid vehicles[J]. International Journal of Automotive Technology, 2013, 14(5):797-804. [17] RUPP A, BAIER H, MERTINY P, et al. Analysis of a flywheel energy storage system for light rail transit[J]. Energy, 2016, 107:625-638. [18] SEBASTIÁN R, PEÑAALZOLA R. Flywheel energy storage systems:Review and simulation for an isolated wind power system[J]. Renewable Sustainable Energy Reviews, 2012, 16(9):6803-6813. [19] HEARN C S, LEWIS M C, PRATAP S B, et al. Utilization of optimal control law to size grid-level flywheel energy storage[J]. IEEE Transactions on Sustainable Energy, 2013, 4(3):611-618. [20] LAPPAS V, RICHIE D, FAUSZ J, et al. Survey of technology developments in flywheel attitude control and energy storage systems[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2):354-365. [21] 张维煜, 朱熀秋. 飞轮储能关键技术及其发展现状[J]. 电工技术学报, 2011, 26(7):141-146. ZHANG Weiyu, ZHU Huangqiu. Key technologies and development status of flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2011, 26(7):141-146. [22] 戴兴建, 邓占峰, 刘刚, 等. 大容量先进飞轮储能电源技术发展状况[J]. 电工技术学报, 2011, 26(7):133-140. DAI Xingjian, DENG Zhanfeng, LIU Gang, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotechnical Society, 2011, 26(7):133-140. [23] 邓自刚, 王家素, 王素玉, 等. 高温超导飞轮储能技术发展现状[J]. 电工技术学报, 2008, 23(12):1-10. DENG Zigang, WANG Jiasu, WANG Suyu, et al. Status of high Tc superconducting flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2008, 12:1-10. [24] 张建成, 黄立培, 陈志业. 飞轮储能系统及其运行控制技术研究[J]. 中国电机工程学报, 2003, 23(3):108-111. ZHANG J, HUANG L, CHEN Z. Research on flywheel energy storage system and its controlling technique[J]. Proceedings of the CSEE, 2003, 23(3):108-111. [25] 黄宇淇, 方宾义, 孙锦枫. 飞轮储能系统应用于微网的仿真研究[J]. 电力系统保护与控制, 2011, 39(9):83-87. HUANG Y Q, FANG B Y, SUN J F. Simulation research on the microgrid with flywheel energy storage system[J]. Power System Protection and Control, 2011, 39(9):83-87. [26] 胡雪松, 孙才新, 刘刃, 等. 采用飞轮储能的永磁直驱风电机组有功平滑控制策略[J]. 电力系统自动化, 2010, 34(13):79-83. HU X, SUN C, LIU R, et al. An active power smoothing strategy for direct-driven permanent magnet synchronous generator based wind turbine using flywheel energy storage[J]. Automation of Electric Power Systems, 2010, 34(13):79-83. [27] 姬联涛, 张建成. 基于飞轮储能技术的可再生能源发电系统广义动量补偿控制研究[J]. 中国电机工程学报, 2010, 30(24):101-106. JI Liantao, ZHANG Jiancheng. Research on generalized momentum compensation method of flywheel energy storage in renewable energy power system[J]. Proceedings of the CSEE, 2010, 30(24):101-106. [28] 阮军鹏, 张建成, 汪娟华. 飞轮储能系统改善并网风电场稳定性的研究[J]. 电力科学与工程, 2008, 24(3):5-8. RUAN Junpeng, ZHANG Jiancheng, WANG Juanhua. Improvement of stability of wind farms connected to power grid using flywheel energy storage system[J]. Electric Power Science and Engineering, 2008, 24(3):5-8. [29] 周龙, 齐智平. 解决配电网电压暂降问题的飞轮储能单元建模与仿真[J]. 电网技术, 2009, 33(19):152-158. ZHOU L, QI Z P. Modeling and simulation of flywheel energy storage unit for voltage sag in distribution network[J]. Power System Technology, 2009, 33(19):152-158. [30] 陈峻岭, 姜新建, 朱东起, 等. 基于飞轮储能技术的新型UPS的研究[J]. 清华大学学报(自然科学版), 2004, 44(10):1321-1324. CHEN Junling, JIANG Xinjian, ZHU Dongqi, et al. UPS using flywheel energy storage[J]. Journal of Tsinghua University(Sci.& Tech.), 2004, 44(10):1321-1324. [31] 丁世海, 李奕良, 戴兴建. 复合材料飞轮结构有限元分析与旋转强度试验[J]. 机械科学与技术, 2008, 27(3):301-304. DING Shihai, LI Yiliang, DAI Xingjian. Structural finite element analysis and spin tests of energy storage flywheel[J]. Mechanical Science and Technology for Aerospace Engineering, 2008, 27(3):301-304. [32] 秦勇, 夏源明, 毛天祥. 纤维束张紧力缠绕复合材料飞轮初应力的三维数值分析[J]. 复合材料学报, 2005, 22(4):149-155. QIN Yong, XIA Yuanming, MAO Tianxiang. 3D numberical analysis of initial stress of composite flywheel fabricated by filament tension winding[J]. Acta Materiae Compositae Sinica, 2005, 22(4):149-155. [33] 戴兴建, 汪勇, 沈祖培. 飞轮储能密度的理论预测与实验测试[J]. 储能科学与技术, 2014, 3(4):312-315. DAI Xingjian, WANG Yong, SHEN Zupei. Theoretical calculations and experimental validation of flywheel energy storage density[J]. Energy Storage Science and Technology, 2014, 3(4):312-315. [34] 唐长亮, 戴兴建, 汪勇. 多层混杂复合材料飞轮力学设计与旋转试验[J]. 清华大学学报(自然科学版), 2015, 55(3):361-367. TANG Changliang, DAI Xingjian, WANG Yong. Mechanical design and spin test of a multilayer commingled composite flywheel[J]. Journal of Tsinghua University(Sci.& Tech.), 2015, 55(3):361-367. [35] 李奕良, 戴兴建, 张小章. 复合材料环向缠绕飞轮轮体工艺应力研究[J]. 机械强度, 2010, 32(2):265-269. LI Yiliang, DAI Xingjian, ZHANG Xiaozhang. Research on process stress for circumferential wound composite flywheel rotors[J]. Journal of Mechanical Strength, 2010, 32(2):265-269. [36] 戴兴建, 李奕良, 于涵. 高储能密度飞轮结构设计方法[J]. 清华大学学报(自然科学版), 2008, 48(3):378-381. DAI Xingjian LI Yiliang, YU Han. Design of high specific energy density flywheel[J]. Journal of Tsinghua University(Sci.& Tech.), 2008, 48(3):378-381. [37] 陈启军, 李成, 铁瑛, 等. 基于逐渐损伤理论的复合材料飞轮转子渐进失效分析[J]. 机械工程学报, 2013, 49(12):60-65. CHEN Qijun, LI Cheng, TIE Ying, et al. Progressive failure analysis of composite flywheel rotor based on progressive damage theory[J]. Journal of Mechanical Engineering, 2013, 49(12):60-65. [38] 汤继强, 张永斌, 刘刚. 超导磁悬浮复合材料储能飞轮转子优化设计[J]. 储能科学与技术, 2013, 2(3):185-188. TANG Jiqiang, ZHANG Yongbin, LIU Gang. Analysis and optimization of an interference fitted composite material rotor of a superconducting energy storage flywheel[J]. Energy Storage Science and Technology, 2013, 2(3):185-188. [39] 秦勇, 王硕桂, 夏源明, 等. 复合材料飞轮破坏转速的算法和高速旋转破坏实验[J].复合材料学报, 2005, 22(4):112-117. QIN Yong, WANG Shuogui, XIA Yuanming, et al. Methods of calculating the failure rotating speed and failure experiment of composite flywheel[J]. Acta Materiae Compositae Sinica, 2005, 22(4):112-117. [40] 田占元, 祝长生, 王玎. 飞轮储能用高速永磁电机转子的涡流损耗[J]. 浙江大学学报工学版, 2011, 45(3):451-457. TIAN Zhanyuan, ZHU Changsheng, WANG Ding. Rotor eddy current loss in high speed permanent magnet motors for flywheel energy storage system[J]. Journal of Zhejiang University, 2011, 45(3):451-457. [41] 王江波, 赵国亮, 蒋晓春, 等. 飞轮储能用高速永磁同步电机设计[J]. 微特电机, 2013, 41(8):20-22. WANG Jiangbo, ZHAO Guoliang, JIANG Xiaochun, et al. Contriving of high-speed PMSM for flywheel energy storage[J]. Small & Special Electrical Machines, 2013, 41(8):20-22. [42] 姚阳, 方攸同, 董凡, 等. 飞轮储能系统中高速电机转子的分析设计[J]. 机电工程, 2014, 31(10):1306-1310. YAO Yang, FANG Youtong, DONG Fan, et al. Analysis and design of the rotor of high speed machine for flywheel energy storage system[J]. Journal of Mechanical & Electrical Engineering, 2014, 31(10):1306-1310. [43] 李大兴, 夏革非, 张华东, 等. 基于混合转子结构和悬浮力控制的新型飞轮储能用无轴承电机[J]. 电工技术学报, 2015, 30(1):48-52. LI Daxing, XIA Gefei, ZHANG Huadong. A novel bearingless motor with hybrid rotor structure and levitation force control for flywheel energy storage supporting system[J]. Transactions of China Electrotechnical Society, 2015, 30(1):48-52. [44] 王德明, 张申, 张广明, 等. 飞轮储能用盘式永磁电机的研究[J]. 微特电机, 2013, 41(10):70-72. WANG Deming, ZHANG Shen, ZHANG Guangming, et al. Researxch on aial-flux permanent magnet motor for flywheel storage system[J]. Small & Special Electrical Machines, 2013, 41(10):70-72. [45] 宋良全, 孙佩石, 苏建徽. 飞轮储能系统用开关磁阻电机控制策略研究[J]. 电力电子技术, 2013, 47(9):55-57. SONG Liangquan, SUN Peishi, SU Jianhui. Research on switched reluctance motor control strategy for flywheel energy storage system[J]. Power Electronics, 2013, 47(9):55-57. [46] 袁野, 孙玉坤, 黄永红, 等. 用于飞轮储能的单绕组磁悬浮飞轮电机径向力补偿方法[J]. 电工技术学报, 2015, 30(14):177-183. YUAN Ye, SUN Yukun, HUANG Yonghong, et al. Radial force compensation method of single winding bearingless flywheel motor application to flywheel energy storage[J]. Transactions of China Electrotechnical Society, 2015, 30(14):177-183. [47] 陈峻峰, 刘昆, 肖凯, 等. 磁悬浮飞轮储能系统机电耦合动力学特性研究[J]. 机械科学与技术, 2012, 31(4):562-567. CHEN Junfeng, LIU Kun, XIAO Kai, et al. Investigation on the dynamics character of electromechanical coupling for flywheel energy storage system based on active magnetic bearing[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(4):562-567. [48] 蒋书运, 卫海岗, 沈祖培. 飞轮储能系统转子动力学理论与试验研究[J]. 振动工程学报, 2002, 15(4):404-409. JIANG Shuyun, WEI Haigang, SHEN Zupei. Rotor dynamics of flywheel energy storage system[J]. J. Vib. Eng., 2002, 15(4):404-409. [49] 戴兴建, 于涵, 李奕良. 飞轮储能系统充放电效率实验研究[J]. 电工技术学报, 2009, 24(3):20-24. DAI X J, YU H, LI Y L. Efficient test on the charging and discharging of the flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2009, 24(3):20-24. [50] 黄宇淇, 姜新建, 邱阿瑞. 飞轮储能能量回馈控制方法[J]. 清华大学学报(自然科学版), 2008, 48(7):1085-1088. HUANG Y, JIANG X, QIU A. Energy feedback control for flywheel energy storage system[J]. Journal of Tsinghua University(Science and Technology), 2008, 48(7):1085-1088. [51] 冯奕, 林鹤云, 房淑华, 等. 飞轮储能系统能量回馈的精确小信号建模及控制器设计[J]. 电工技术学报, 2015, 30(2):27-33. FENG Yi, LIN Heyun, FANG Shuhua, et al. Precise small-signal modeling and controller design of energy feedback for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2015, 30(2):27-33. [52] 张翔, 杨家强, 王萌. 一种采用负载电流和转速补偿的改进型飞轮储能系统放电控制算法(英文)[J]. 电工技术学报, 2015, 30(14):6-17. ZHANG Xiang, YANG Jiaqiang, WANG Meng. An improved discharge control strategy with load current and rotor speed compensation for flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2015, 30(14):6-17. [53] 杜玉亮, 郑琼林, 郭希铮, 等. 飞轮储能系统反向制动发电问题研究[J]. 电工技术学报, 2013, 28(7):157-162. DU Y L, ZHENG Q L, GUO X Z, et al. Research on problem of regenerative braking process of flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2013, 28(7):157-162. [54] 刘学, 姜新建, 张超平, 等. 大容量飞轮储能系统优化控制策略[J]. 电工技术学报, 2014, 29(3):75-82. LIU X, JIANG X J, ZHANG C P, et al. Optimization control strategies of large capacity flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(3):75-82. [55] 郭伟, 王跃, 李宁. 永磁同步电机飞轮储能系统充放电控制策略[J]. 西安交通大学学报, 2014, 48(10):60-65. GUO Wei, WANG Yue, LI Ning. Control strategy for flywheel energy storage system with permanent magnet synchronous machine[J]. Journal of Xi'an JiaoTong University, 2014, 48(10):60-65. [56] 刘文军, 唐西胜, 周龙, 等. 基于飞轮储能系统的直流UPS控制方法研究[J]. 电工电能新技术, 2014, 33(10):16-22. LIU W J, TANG X S, ZHOU L, et al. Research on control method of FESS based DC UPS[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(10):16-22. [57] 刘文军, 唐西胜, 周龙, 等. 基于背靠背双PWM变流器的飞轮储能系统并网控制方法研究[J]. 电工技术学报, 2015, 30(16):120-128. LIU Wenjun, TANG Xisheng, ZHOU Long, et al. Research on grid-connected control method for FESS based on back-to-back converter[J]. Transactions of China Electrotechnical Society, 2015, 30(16):120-128. [58] 朱俊星, 姜新建, 黄立培. 基于飞轮储能的动态电压恢复器补偿策略的研究[J]. 电工电能新技术, 2009, 28(1):46-50. ZHU Junxing, JIANG Xinjiang, HUANG Lipei. Compensation strategy of dynamic voltage restorer with flywheel energy storage[J]. Advanced Technology of Electrical Engineering and Energy, 2009, 28(1):46-50. [59] 蒋启龙, 连级三. 飞轮储能在地铁系统中的应用[J]. 变流技术与电力牵引, 2007(4):13-17. JIANG Qilong, LIAN Jisan. Application study on flying-wheel energy storage in subway system[J]. Transformer Technology and Electric Traction, 2007(4):13-17. [60] 文少波, 蒋书运. 飞轮储能系统在汽车中的应用研究[J]. 机械设计与制造, 2010(12):82-84. WEN Shaobo, JIANG Shuyun. Application study of flywheel energy storage system in automobile[J]. Machinery Design & Manufacture, 2010(12):82-84. [61] 王冉冉, 徐宁. 电动汽车中飞轮储能技术的应用[J]. 山东理工大学学报(自然科学版), 2003, 17(3):100-102. WANG Ranran, XU Ning. Implication of flywheel technology in electric vehicles[J]. Journal of Shandong University of Technology (Sic. & Tech.), 2003, 17(3):100-102. [62] 韩永杰, 任正义, 吴滨, 等. 飞轮储能系统在1.5 MW风机上的应用研究[J]. 储能科学与技术, 2015, 14(2):198-202. HAN Y, REN Z, WU B, et al. Flywheel energy storage systems for a 1.5 MW wind generator applications[J]. 2015, 14(2):198-202. [63] 王健, 王昆, 陈全世. 风力发电和飞轮储能联合系统的模糊神经网络控制策略[J]. 系统仿真学报, 2007, 19(17):4017-4020. WANG Jian, WANG Kun, CHEN Quanshi. Fuzzy neural network control strategy of wind generation and flywheel energy storage combined system[J]. Journal of System Simulation, 2007, 19(17):4017-4020. [64] 向荣, 王晓茹, 谭谨. 基于飞轮储能的并网风电场有功功率及频率控制方法研究[J]. 系统科学与数学, 2012, 32(4):438-449. XIANG Rong, WANG Xiaoru, TAN Jin. Operation control of flywheel energy storage system applying to wind farm[J]. Journal of Systems Science and Mathematical Sciences, 2012, 32(4):438-449. [65] 张超平, 戴兴建, 苏安平, 等. 石油钻机动力系统飞轮储能调峰试验研究[J]. 石油机械, 2013, 41(5):3-6. ZHANG Chaoping, DAI Xingjian, SU Anping, et al. Experimental study of flywheel energy storage and peak regulation of rig power system[J]. China Petroleum Machinery, 2013, 41(5):3-6. [66] 张超平. 基于飞轮储能的钻机节能减排技术应用研究[J]. 石油天然气学报, 2013, 35(8):156-158. ZHANG Chaoping. Research on energy saving and emission reduction technology of drilling rig based on flywheel energy storage[J]. Journal of Oil and Gas Technology, 2013, 35(8):156-158. [67] 薛金花, 叶季蕾, 汪春, 等. 飞轮储能在区域电网中的调频应用及经济性分析[J]. 电网与清洁能源, 2013, 29(12):113-118. XUE Jinhua, YE Jilei, WANG Chun, et al. Frequency regulation application and economic analysis of flywheel energy storage in a regional power grid[J]. Power System and Clean Energy, 2013, 29(12):113-118. [68] 汪勇, 戴兴建, 孙清德. 基于有限元的金属飞轮结构设计优化[J]. 储能科学与技术, 2015, 4(3):267-272. WANG Yong, DAI Xingjian, SUN Qingde. Structural design and optimization of metallic flywheel based on FEM[J]. Energy Storage Science and Technology, 2015, 4(3):267-272. [69] 汪勇, 戴兴建, 李振智. 60 MJ飞轮储能系统转子芯轴结构设计[J]. 储能科学与技术, 2016, 5(4):503-508. WANG Yong, DAI Xingjian, LI Zhenzhi. Structural design of rotors and shafts of a 60 MJ flywheel energy storage system[J]. Energy Storage Science and Technology, 2016, 5(4):503-508. [70] PORTNOV G G. Composite flywheels. Hand book of composites. Structure and design[M]. New York:Elsevier, 1989:532-582. [71] DETERESA S J. Materials for advanced flywheel energy storage devices[J]. MRS Bulletin, 1999, 24(11):51-56. [72] RANTA M A. On the optimum shape of rotating disk of any isotropic material[J]. International Journal of Solids and Structures, 1969, 5(11):1247-1257. [73] TOLAND R H, ALPER J. Transfer matrix for analysis of composite flywheels[J]. J. Compos. Mater., 1976, 10:258-261. [74] DANFELT E L, HEWS S A, CHOV T. Optimization of composite flywheel design[J]. International Journal of Mechanical Sciences, 1977, 19(2):69-78. [75] ARNOLD S M, SALEEB A F, AL-ZOUBI N R. Deformation and life analysis of composite flywheel disk systems[J]. Composites Part B:Engineering, 2002, 33(6):433-459. [76] PEREZ-APARICIO J L, RIPOLL L. Exact, integrated and complete solutions for composite flywheels[J]. Composite Structures, 2011, 93(5):1404-1415. [77] TZENG J, EMERSON R, MOY P. Composite flywheels for energy storage[J]. Compsites Science and Technology, 2006, 66(14):2520-2527. [78] ARVIN A C, BAKIS C E. Optimal design of press-fitted filament wound composite flywheel rotors[J]. Composite Structures, 2006, 72(1):47-57. [79] HA S K, KIM M H, HAN S C, et al. Design and spin test of a hybrid composite flywheel rotor with a split type hub[J]. Journal of Composite Materials, 2006, 40(23):2113-2130. [80] HA S K, KIM J H, HAN Y. Design of a hybrid composite flywheel multi-rim rotor system using geometric scaling factors[J]. Journal of Composite Materials, 2008, 42(8):771-785. [81] KRACK M, SECANELL M, MERTINY P. Cost optimization of hybrid composite flywheel rotors for energy storage[J]. Structural and Multidisciplinary Optimization, 2010, 41(5):779-795. [82] HA S K, KIM S J, NASIR S U, et al. Design optimization and fabrication of a hybrid composite flywheel rotor[J]. Composite Structures, 2012, 94(11):3290-3299. [83] KIM S J, HAYAT K, NASIR S U, et al. Design and fabrication of hybrid composite hubs for a multi-rim flywheel energy storage system[J]. Composite Structures, 2014, 107:19-29. [84] GOWAYED Y, FLOWERS G T, TRUDELL J J. Optimal design of multi-direction composite flywheel rotors[J]. Polymer Composites, 2002, 23(3):433-441. [85] FABIEN B C. The influence of failure criteria on the design optimization of stacked-ply composite flywheels[J]. Structural and Multidisciplinary Optimization, 2007, 33(5):507-517. [86] HIROSHIMA N, HATTA H, KOYAMA M, et al. Optimization of flywheel rotor made of three-dimensional composites[J]. Composite Structures, 2015, 131:304-311. [87] DAI X J, WANG Y, TANG C L, et al. Mechanics analysis on the composite flywheel stacked from circular twill woven fabric rings[J]. Composite Structures, 2016, 155:19-28. [88] 戴兴建, 张小章, 姜新建, 等. 清华大学飞轮储能技术研究概况[J]. 储能科学与技术, 2012, 1(1):64-68. DAI Xingjian, ZHANG Xiaozhang, JIANG Xinjian, et al. Flywheel energy storage technology in Tsinghua University[J]. Energy Storage Science and Technology, 2012, 1(1):64-68. [89] SOTELO G G, DE ANDRADE R, FERREIRA A C. Magnetic bearing sets for a flywheel system[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2):2150-2153. [90] FILATOV A V, MASLEN E H. Passive magnetic bearing for flywheel energy storage systems[J]. IEEE Transactions on Magnetics, 2001, 37(6):3913-3924. [91] ZHU K Y, XIAO Y, RAJENDRA A U. Optimal control of the magnetic bearings for a flywheel energy storage system[J]. Mechatronics, 2009, 19(8):1221-1235. [92] CHEN L L, ZHU C S, WANG M, et al. Vibration control for active magnetic bearing high-speed flywheel rotor system with modal separation and velocity estimation strategy[J]. Journal of Vibroengineering, 2015, 17(2):757-775. [93] SU Z, WANG D, CHEN J, et al. Improving operational performance of magnetically suspended flywheel with PM-biased magnetic bearings using adaptive resonant controller and nonlinear compensation method[J]. IEEE Transactions on Magnetics, 2016, 52(7):1-4. [94] 于洁, 祝长生, 余忠磊. 自传感电磁轴承位移解调过程的精确建模和分析[J]. 中国电机工程学报, 2016, 36(21):5939-5946. YU Jie, ZHU Changsheng, YU Zhonglei. The precise modeling and analysis of demodulation approach in self-sensing active magnetic bearings chin[J]. Soc. for Elec. Eng., 2016, 36(21):5939-5946. [95] 唐明, 祝长生, 于洁. 非磁饱和偏置下自传感主动电磁轴承的转子位移协同估计[J]. 电工技术学报, 2014, 29(5):205-212. TANG Ming, ZHU Changsheng, YU Jie. Cooperative rotor position estimation of active magnetic bearings with unsaturated magnetic bias[J]. Transactions of China Electrotechnical Society, 2014, 29(5):205-212. [96] HULL J R, MULCAHY T M, UHERKA K L, et al. Flywheel energy-storage using superconducting magnetics bearings[J]. Applied Superconductivity, 1994, 2(7):449-455. [97] BORNEMANN H J, RITTER T, URBAN C, et al. Low-friction in a flywheel system with passive superconducting magnetic bearings[J]. Applied Superconductivity, 1994, 2(7/8):439-447. [98] COOMBS T, CAMPBELL A M, STOREY R, et al. Superconducting magnetic bearings for energy storage flywheels[J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2):968-971. [99] SOTELO G G, FERREIRA A C, DE ANDRADE R. Halbach array superconducting magnetic bearing for a flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2):2253-2256. [100] KOSHIZUKA N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C:Superconductivity and Its Applications, 2006, 445:1103-1108. [101] STRASIK M, HULL J R, MITTLEIDER J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3):doi:10.1088/0953-2048/23/3/034021. [102] WERFEL F N, FLOEGEL-DELOR U, ROTHFELD R, et al. Superconductor bearings, flywheels and transportation[J]. Superconductor Science and Technology, 2011, 25(1):doi:10.1088/0953-2048/25/1/014007. [103] HAN Y H, PARK B J, JUNG S Y, et al. Study of superconductor bearings for a 35 kW·h superconductor flywheel energy storage system[J]. Physica C:Superconductivity and Its Applications, 2012, 483:156-161. [104] XU K X, WU D J, JIAO Y L, et al. A fully superconducting bearing system for flywheel applications[J]. Superconductor Science and Technology, 2016, 29(6):doi:10.1088/0953-2048/29/6/64001. [105] SOTELO G G, RODRIGUEZ E, COSTA F S, et al. Tests with a hybrid bearing for a flywheel energy storage system[J]. Superconductor Science and Technology, 2016, 29(9):doi:10.1088/0953-2048/29/9/095016. [106] 汪勇, 戴兴建, 唐长亮. 大卸载力铠装永磁轴承设计分析[J]. 机械科学与技术, 2015, 34(6):858-862. WANG Yong, DAI Xingjian, TANG Changliang. Analysis and design of armoured PMBs with huge unloading force[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6):858-862. [107] LIU C C. Comparison of AC drives for electric vehicles-a report on experts' opinion survey[J]. IEEE Aerospace and Electronic Systems Magazine, 1994, 9(8):7-11. [108] EHSANI M, GAO Y M, GAY S. Characterization of electric motor drives for traction applications[C]//Industrial Electronics Society, 2003.IECON'03.The 29th Annual Conference of the IEEE. IEEE, 2003(1):891-896. [109] PENA-ALZOLA R, SEBASTIAN R, QUESADA J, et al. Review of flywheel based energy storage systems[C]//International Conference on Power Engineering, Energy and Electrical Drives. IEEE, 2011:1-6. [110] KIM Y H, PARK K S, JEONG Y S. Comparison of flywheel systems for harmonic compensation based on wound/squirrel-cage rotor type induction motors[J]. Electric Power Systems Research, 2003, 64(3):189-195. [111] TSAO P, SENESKY M, SANDERS S R. An integrated flywheel energy storage system with homopolar inductor motor/generator and high-frequency drive[J]. IEEE Transactions on Industry Applications, 2003, 39(6):1710-1725. [112] PARK J D, KALEV C, HOFMANN H F. Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies[J]. IEEE Transactions on Industrial Electronics, 2008, 55(8):3038-3046. [113] SUN X D, KOH K H, YU B G, et al. Fuzzy-logic-based V/f control of an induction motor for a DC grid power-leveling system using flywheel energy storage equipment[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):3161-3168. [114] CHOI J H, JANG S M, SUNG S Y, et al. Operating range evaluation of double-side permanent magnet synchronous motor/generator for flywheel energy storage system[J]. IEEE Transactions on Magnetics, 2013, 49(7):4076-4079. [115] LIU K, FU X H, LIN M Y, et al. AC copper losses analysis of the ironless brushless DC motor used in a flywheel energy storage system[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7):1-5. [116] KIM J M, CHOI J Y, LEE S H. Experimental evaluation on power loss of coreless double-side permanent magnet synchronous motor/generator applied to flywheel energy storage system[J]. Journal of Electrical Engineering and Technology, 2017, 12(1):256-261. [117] 田占元, 祝长生, 王玎. 飞轮储能用高速永磁电机转子的涡流损耗[J]. 浙江大学学报(工学版), 2011, 45(3):451-457. TIAN Zhanyuan, ZHU Changsheng, WANG Ding. Rotor eddy current loss in high speed permanent motors for flywheel energy storage system[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(3):451-457. [118] MASON P E, ATALLAH K, HOWE D. Hard and soft magnetic composites in high-speed flywheels[C]//Proceedings of the International Committee on Composite Materials, Seattle, WA, USA, 1999:12. [119] KORANE K J. Reinventing the flywheel[EB/OL]. Machine Design, 2011:http://machinedesign.com/news/reinventing-flywheel. [120] BUCKLEY J M, ATALLAH K, BINGHAM C M, et al. Magnetically loaded composite for roller drives[C]//Proceedings of the IEEE Colloquium on New Magnetic Materials-Bonded Iron, Lamination Steels, Sintered Iron and Permanent Magnets. IEEE Xplore, 1998:5/1-5/6. [121] LYU X, DI L, YOON S, et al. Emulation of energy storage flywheels on a rotor-AMB test rig[J]. Mechatronics, 2016, 33:146-160. [122] RASHID M H. Power electronics hand book[M]. USA:Elsevier, Butterworth-Heinemann, 2011. [123] STRZELECKI R, BENYSEK G. Power electronics in smart electrical energy net-works[M]. USA:Springer Science and Business Media, 2008. [124] CHANG X, LI Y, ZHANG W, et al. Active disturbance rejection control for a flywheel energy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62(2):991-1001. [125] AKAGI H. Large static converters for industry and utility applications[J]. Proceedings of the IEEE, 2001, 89(6):976-983. [126] AWADALLAH M A, VENKATESH B. Energy storage in flywheels:An overview[J]. Canadian Journal of Electrical and Computer Engineering, 2015, 38(2):183-193. [127] NABAE A, TAKAHASHI I, AKAGI H. A new neutral-point-clamped PWM inverter[J]. IEEE Transactions on Industry Applications, 1981, IA-17:518-523. [128] BOUHALI O, FRANÇOIS B, SAUDEMONT C, et al. Practical power control design of a NPC multi-level inverter for grid connection of a renewable energy plant based on a FESS and a wind generator[C]//Proceedings of the 32th Annual IEEE Ind. Electronic Conference, 2006:4291-4296. [129] DULANEY A D, BENO J H, THOMPSON R C. Modeling of multiple liner containment systems for high speed rotors[J]. IEEE Transactions on Magnetics, 1999, 35(1):334-339. [130] SAPOWITH A D, HANDY W E. A composite flywheel burst containment study[R]. Lawrence Livermore National Lab, CA(USA), 1982. [131] 卫海岗, 戴兴建, 沈祖培. 储能飞轮风损的理论计算与试验研究[J]. 机械工程学报, 2005, 41(6):188-193. WEI Haigang, DAI Xingjian, SHEN Zupei. Theoretical calculation and experimental study on the wind loss of the energy storage flywheel[J].Chinese Journal of Mechanical Engineering, 2005, 41(6):188-193. [132] 戴兴建, 张超平, 王善铭, 等. 500 kW飞轮储能电源系统设计与实验研究[J]. 电源技术, 2014, 38(6):1123-1126. DAI Xingjian, ZHANG Chaoping, WANG Shanming, et al. Design and experimental test of 500 kW flywheel energy storage power system[J]. Chinese Journal of Power Sources, 2014, 38(6):1123-1126. [133] 冯开明. 可控核聚变与ITER计划[J]. 现代电力, 2006, 23(5):82-88. FENG Kaiming. Controlled nuclear fusion and ITER program[J]. Modern Electric Power, 2006, 23(5):82-88. [134] 石秉仁. 磁约束聚变-原理与实践[M]. 北京:原子能出版社, 1999. SHI Bingren. Magnetic confinement fusion:Principles and practice[M]. Beijing:Atomic Energy Press, 1999. [135] LUCAS J, CORT'ES M, M'ENDEZ P, et al. Energy storage system for a pulsed DEMO[J]. Fusion Engineering and Design, 2007, 82(15):2752-2757. [136] JAROMIR Zajac, FRANTISEK Zacek, VOJTECH Lejsek, et al. Short-term power sources for tokamaks and other physical experiments[J]. Fusion Engineering and Design, 2007, 82(4):369-379. [137] BONICELLI' T. High power electronics at JET:An overview[C]//IEEE Colloquium on Power Electronics for Demanding Applications. IEEE Xplore, 1999:3/1-3/4. [138] AWAD M, BAKER E, BONANOS P, et al. TFTR-MG uprate, analysis and performance[C]//Fusion Engineering, 1995. SOFE'95. Seeking a New Energy Era., 16th IEEE/NPSS Symposium. IEEE, 1995(1):505-508. [139] ANDO T, SHIMADA R, MATSUKAWA T, et al. Operation experience of JT-60 magnet system[J]. IEEE Transactions on Magnetics, 1988, 24(2):1244-1247. [140] YAO Lieying, XUAN Weimin, LI Huajun, et al. Design and development of the power supply system for HL-2A tokamak[J]. Fusion Engineering and Design, 2005, 75(11):163-167. [141] EMADI A, NASIRI A, BEKIAROV S B. Uninterruptible power supplies and active filters[M]. USA:CRC Press, 2004. [142] ROBERT H, JOSEPH B, ALAN W. Flywheel batteries come around again[J]. IEEE Spectrum, 2002, 39(4):46-51. [143] AGIVE POWER. Flywheel technology[EB/OL]. http://www.activepower.com/en-GB/4895/fly-wheeltechnology,(2017,2,10),250kW-25s,or675kW-15s. [144] PILLER POWER SYSTEMS. Energy storage[EB/OL]. http://www.piller.com/en-GB/205/energy-storage,(2017,2,10),2400kW,8s,21MJ,3600-1500r/min. [145] CALNETIX TECHNOLOGIES. https://www.calnetix.com/vycon-direct-connect-xe-products,(2017,2,10),300kW,4MJ,36750-24500. [146] POWER THRU. Carbon fiber flywheel technology for government opplications[EB/OL]. http://www.power-thru.com/carbon_fiber_fly-wheel_technology.html. [147] HEDLUND M, LUNDIN J, DE SANTIAGO J, et al. Flywheel energy storage for automotive applications[J]. Energies, 2015, 8(10), 10636-10663. [148] HAYES R, KAJS J, THOMPSON R, BENO J. Design and testing of a flywheel battery for a transit bus[R]. SAE Technical Paper, 1999. [149] DHAND A, PULLEN K. Review of battery electric vehicle propulsion systems, incorporating flywheel energy storage[J]. International Journal of Automotive Technology, 2015, 16(3):487-500. [150] WHITELAW R. Two new weapons against automotive air pollution:The hydrostatic drive and the flywheel-electric LDV[M]. USA:OSTI. GOV, 1972. [151] BURROWS C, PRICE G, PERRY F. An assessment of flywheel energy storage in electric vehicles[J]. SAE Technical Paper, 1980:800885. [152] BURROWS C R, BARLOW T M. Flywheel power system developments for electric vehicle applications[C]//Electric Vehicle Development Group 4th Int. Conf.:Hybrid, Dual Mode and Tracked Systems, London, 1981. [153] PRICE G. An assessment of flywheel energy storage for electric vehicles[D]. UK:University of Sussex, 1980. [154] SCHAIBLE U, SZABADOS B. A torque controlled high speed flywheel energy storage system for peak power transfer in electric vehicles[C]//IEEE Industry Applications Society Meeting, 1994:435-442. [155] ANERDI G, BRUSAGLINO G, ANCARANI A, BIANCHI R. Technology potential of flywheel storage and application impact on electric vehicles[C]//12th international electric vehicle symposium (EVS-12). 1994(1):37-47. [156] MELLOR P, SCHOFIELD N, HOWE D. Flywheel and supercapacitor peak power buffer technologies[C]//Electric, Hybrid and Fuel Cell Vehicles. IEEE Xplore, 2000:8/1-8/5. [157] LUNDIN J. Flywheel in an all-electric propulsion system[D]. Uppsala Municipality:Uppsala University, 2011. [158] The Engineers Journal. GKN takes hybrid technology from the race track to the bus stop[EB/OL]. http://www.engineersjournal.ie/gyrodrive-hybrid-technology-bus/. [159] PASTOR M L, GARCIA-TABARES R L, VAZQUEZ V C. Flywheels store to save:Improving railway efficiency with energy storage[J]. IEEE Electrific. Mag., 2013, 1(2):13-20. [160] RICHARDSON M B. Flywheel energy storage system for traction applications[C]//Power Electron., Mach. and Drives, 2002. International Conference on (Conf. Publ. No. 487). IET, 2002:275-279. [161] RADCLIFFE P, WALLACE J S, SHU L H. Stationary applications of energy storage technologies for transit systems[C]//Electric Power and Energy Conference (EPEC), 2010 IEEE. IEEE, 2010:1-7. [162] GEE A M, DUNN R W. Analysis of trackside flywheel energy storage in light rail systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(9):3858-3869. [163] FLYNN M M, MCMULLEN P, SOLIS O. High-speed flywheel and motor drive operation for energy recovery in a mobile gantry crane[C]//Applied Power Electronics Conference, APEC 2007-Twenty Second Annual IEEE. IEEE, 2007:1151-1157. [164] FLYNN M M, MCMULLEN P, SOLIS O. Saving energy using flywheels[J]. IEEE Ind. Appl. Mag., 2008, 14(6):69-76. [165] 牛跃进, 郭巧合, 李涛, 等. 基于模糊控制的钻机飞轮储能调峰控制系统[J]. 电气传动自动化, 2016, 38(5):16-18. NIU Yuejin, GUO Qiaohe, LI Tao, et al. Rig flywheel energy-storage peak-control system based on fuzzy control[J]. Electric Drive Automation, 2016, 38(5):16-18. [166] BEHNAM Zakeri, SANNA Syri. Electrical energy storage systems:A comparative life cycle cost analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 42:569-596. [167] BEACON POWER. Smart energy matrix, 20MW frequency regulation plant[EB/OL]. http://www.beaconpower.com/files/SEM_20MW_2010.Pdf, 2011. [168] ZHANG F, TOKOMBAYEV M, SONG Y, et al. Effective flywheel energy storage (FES) offer strategies for frequency regulation service provision[C]//Power Systems Computation Conference (PSCC), 2014. IEEE, 2014:1-7. [169] TARAFT S, REKIOUA D, AOUZELLAG D. Wind power control system associated to the flywheel energy storage system connected to the grid[J]. Energy Procedia, 2013, 360:1147-1157. [170] SAID R G, ABDEL-KHALIK A S, EL ZAWAWI A, et al. Integrating flywheel energy storage system to wind farms-fed HVDC system via a solid state transformer[C]//International Conference on Renewable Energy Research and Application. IEEE, 2014:375-380. [171] DÍAZ-GONZÁLEZ F, SUMPER A, GOMIS-BELLMUNT O, BIANCHI F D. Energy management of flywheel-based energy storage device for wind power smoothing[J]. Applied Energy, 2013, 110:207-219. [172] DIAZ-GONZALEZ F, BIANCHI F D, SUMPER A, et al. Control of a flywheel energy storage system for power smoothing in wind power plants[J]. IEEE Transactions ON Energy Conversion, 2014, 29(1):204-214. [173] RAMLI M A, HIENDRO A, TWAHA S. Economic analysis of PV/diesel hybrid system with flywheel energy storage[J]. Renewable Energy, 2015, 78:398-405. [174] TIPAKORN Greigarn, MARIO Garcia-Sanz. Control of flywheel energy storage systems for wind farm power fluctuation mitigation[J]. Energy Tech.IEEE, 2011:1-6. [175] SEBASTIÁN R, PEÑA-ALZOLA R. Control and simulation of a flywheel energy storage for a wind diesel power system[J]. International Journal of Electrical Power and Energy Systems, 2015, 64:1049-1056. |
[1] | 杨孝杰, 王海云, 蒋中川, 宋章华. 应用于飞轮储能的BLDC电机功率双向流动策略设计[J]. 储能科学与技术, 2022, 11(7): 2233-2240. |
[2] | 高峻泽, 柳亦兵, 周传迪, 何海婷, 武鑫. 飞轮用永磁悬浮轴承的磁路设计及磁力解析模型[J]. 储能科学与技术, 2022, 11(5): 1437-1445. |
[3] | 周勇, 陈香玉, 简霖, 王扶辉, 田德高, 韩传军. 游梁式抽油机飞轮储能系统设计及实验[J]. 储能科学与技术, 2022, 11(2): 593-599. |
[4] | 陈玉龙, 武鑫, 滕伟, 柳亦兵. 用于风电功率平抑的飞轮储能阵列功率协调控制策略[J]. 储能科学与技术, 2022, 11(2): 600-608. |
[5] | 于苏杭, 郭文勇, 滕玉平, 桑文举, 蔡洋, 田晨雨. 飞轮储能轴承结构和控制策略研究综述[J]. 储能科学与技术, 2021, 10(5): 1631-1642. |
[6] | 戴兴建, 胡东旭, 张志来, 陈海生, 朱阳历. 高强合金钢飞轮转子材料结构分析与应用[J]. 储能科学与技术, 2021, 10(5): 1667-1673. |
[7] | 张兴, 阮鹏, 张柳丽, 田刚领, 祝保红. 飞轮储能装置性能测试[J]. 储能科学与技术, 2021, 10(5): 1674-1678. |
[8] | 何林轩, 李文艳. 飞轮储能辅助火电机组一次调频过程仿真分析[J]. 储能科学与技术, 2021, 10(5): 1679-1686. |
[9] | 李红, 储江伟, 孙术发, 李宏刚. 车载电磁耦合飞轮储能系统的特性[J]. 储能科学与技术, 2021, 10(5): 1687-1693. |
[10] | 张兴, 阮鹏, 张柳丽, 李娟, 田刚领, 胡东旭, 祝保红. 飞轮储能在华中区域火电调频中的应用分析[J]. 储能科学与技术, 2021, 10(5): 1694-1700. |
[11] | 兰晨, 李文艳. 两种变厚度空心储能飞轮的应力特性[J]. 储能科学与技术, 2021, 10(3): 1080-1087. |
[12] | 祝保红, 李光军, 李树胜, 崔亚东. 基于储能飞轮的油井发电机功率补偿与节能应用[J]. 储能科学与技术, 2021, 10(3): 1088-1094. |
[13] | 李红, 储江伟, 孙术发, 刘贺. 车用飞轮混合动力系统的应用进展[J]. 储能科学与技术, 2021, 10(2): 534-543. |
[14] | 陈星宇, 刘忠, 寇攀高, 邹淑云, 潘宜桦. 离网型风-光-抽水蓄能恒压供电系统[J]. 储能科学与技术, 2021, 10(1): 355-361. |
[15] | 汪军水, 戴兴建, 徐旸, 皮振宏. 高速储能飞轮转子芯轴-轮毂连接结构优化设计[J]. 储能科学与技术, 2020, 9(6): 1806-1811. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||