储能科学与技术 ›› 2025, Vol. 14 ›› Issue (9): 3417-3430.doi: 10.19799/j.cnki.2095-4239.2025.0159

• 储能系统与工程 • 上一篇    

考虑储能寿命和经验模态分解的区域配电网混合储能配置

王凯亮1(), 孙宇军2, 钟锦星1, 苏向阳2, 李俊辉1, 刘宗扬1, 蔡煜2(), 陈艺丹2   

  1. 1.广东电网有限责任公司东莞供电局,广东 东莞 523321
    2.广东新型储能国家研究院有限公司,广东 广州 510540
  • 收稿日期:2025-02-22 修回日期:2025-03-21 出版日期:2025-09-28 发布日期:2025-09-05
  • 通讯作者: 蔡煜 E-mail:164097030@qq.com;cyappennino54@163.com
  • 作者简介:王凯亮(1988—),男,硕士,工程师,研究方向为电网规划,E-mail:164097030@qq.com
  • 基金资助:
    南方电网有限公司科技项目[031900KC23060001(GDKJXM20230678)

Hybrid energy storage configuration for regional distribution network considering energy storage lifespan and empirical mode decomposition

Kailiang WANG1(), Yujun SUN2, Jinxing ZHONG1, Xiangyang SU2, Junhui LI1, Zongyang LIU1, Yu CAI2(), Yidan CHEN2   

  1. 1.Guangdong Power Grid Corp Dongguan Power Supply Bureau, Dongguan 523321, Guangdong, China
    2.National Institute of Guangdong Advanced Energy Storage, Guangzhou 510540, Guangdong, China
  • Received:2025-02-22 Revised:2025-03-21 Online:2025-09-28 Published:2025-09-05
  • Contact: Yu CAI E-mail:164097030@qq.com;cyappennino54@163.com

摘要:

为了应对区域配电网中新能源发电及负荷功率波动引发的安全稳定问题,同时考虑到新能源发电的高频低频波动耦合以及源荷双侧的波动耦合,本工作提出了一种基于经验模态分解和多目标优化的区域配电网两阶段混合储能配置方法,旨在建立兼顾新能源高低频波动、系统运行经济性与稳定性的协同优化框架。第一阶段模型使用滑动平均滤波器得到混合储能需要平抑的功率波动,然后通过改进的自适应噪声完全集成经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)实现并网分钟级波动功率高低频分离,并考虑超级电容综合成本和分钟波动得到最优噪声标准差(noise standard deviation,NSTD)和高低频模态分界数下的超级电容最优配置,以平抑光伏发电分钟级高频波动。第二阶段模型以系统综合成本、网损和电压波动为多目标,基于多目标粒子群算法对混合储能中的电化学储能容量进行优化配置,得到同时满足分钟级和小时级波动的混合储能配置方案,并以IEEE 33节点系统为例验证所提方法的有效性和先进性,结果表明与传统方法相比所提方法能够协同考虑节点高低频波动耦合和系统低频波动耦合,使并网分钟级高频波动量下降91.1%,平均电压偏离量下降10.1%,电压偏差最大值下降55.4%,同时系统网损下降55.9%,系统购电量下降10.88%。

关键词: ICEEMDAN, 混合储能系统, 电压波动, 光伏并网, 两阶段规划

Abstract:

To address the safety and stability issues caused by power fluctuations in renewable energy generation and load in regional distribution networks, while considering the coupling of high- and low-frequency fluctuations on both the generation and load sides, this study proposes a two-stage hybrid energy storage configuration method based on empirical mode decomposition and multi-objective optimization. The framework aims to establish a coordinated optimization mechanism that integrates high-/low-frequency fluctuation mitigation with economic operation and system stability. In the first-stage model, a moving average filter is used to extract the power fluctuations that need to be mitigated by the hybrid energy storage system. The improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is then applied to separate the high- and low-frequency components of the minute-level grid-connected power fluctuations. By considering the comprehensive cost of supercapacitors (SCs) and minute-level fluctuations, the optimal noise standard deviation and the mode boundary number between high- and low-frequency components are determined to achieve an optimal SC configuration for mitigating high-frequency minute-level fluctuations in photovoltaic generation. In the second-stage model, a multi-objective optimization based on an improved multi-objective particle swarm optimization algorithm is conducted to optimize the capacity configuration of the hybrid energy storage system, with the objectives of minimizing the comprehensive system cost, power loss, and voltage fluctuations. This approach provides a configuration scheme that simultaneously addresses minute-level and hourly-level fluctuations. The proposed method is validated using the IEEE 33-node system. The results demonstrate that, compared to traditional methods, this approach effectively considers the coupling of high- and low-frequency fluctuations at individual nodes and across the system. Specifically, it reduces minute-level high-frequency grid-connected fluctuations by 91.1%, the average voltage deviation by 10.1%, the maximum voltage deviation by 55.4%, system power loss by 55.9%, and system purchased electricity by 10.88%.

Key words: ICEEMDAN, hybrid energy storage system, voltage fluctuations, photovoltaic grid integration, two-stage configuration

中图分类号: