[1] |
国家发展改革委. 国家发展改革委发布«氢能产业发展中长期规划(2021—2035年)»[J]. 稀土信息, 2022(4): 26-32.
|
|
National Development and Reform Commission. The National Development and Reform Commission issued the medium and long-term plan for the development of hydrogen energy industry (2021-2035)[J]. Rare Earth Information, 2022(4): 26-32.
|
[2] |
刘玮, 万燕鸣, 熊亚林, 等. "双碳" 目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385.
|
|
LIU W, WAN Y M, XIONG Y L, et al. Outlook of low carbon and clean hydrogen in China under the goal of "carbon peak and neutrality"[J]. Energy Storage Science and Technology, 2022, 11(2): 635-642. DOI: 10.19799/j.cnki.2095-4239.2021.0385.
|
[3] |
陈海生, 李泓, 徐玉杰, 等. 2023年中国储能技术研究进展[J]. 储能科学与技术, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
|
CHEN H S, LI H, XU Y J, et al. Research progress on energy storage technologies of China in 2023[J]. Energy Storage Science and Technology, 2024, 13(5): 1359-1397. DOI: 10.19799/j.cnki.2095-4239.2024.0441.
|
[4] |
MAN I C, SU H Y, CALLE-VALLEJO F, et al. Cover picture: Universality in oxygen evolution electrocatalysis on oxide surfaces [J]. ChemCatChem, 2011, 3(7): 1085. DOI: 10.1002/cctc.201190027.
|
[5] |
XING Y C, LIU S L, LIU Y, et al. Construction of nickel phosphide/iron oxyhydroxide heterostructure nanoparticles for oxygen evolution[J]. Nano Energy, 2024, 123: 109402. DOI: 10.1016/j.nanoen.2024.109402.
|
[6] |
张唯怡, 张议洁, 王进伟, 等. 电解水制氢技术及大电流析氧反应研究与展望[J]. 工程科学学报, 2023, 45(7): 1057-1070. DOI: 10. 13374/j.issn2095-9389.2022.09.20.005.
|
|
ZHANG W Y, ZHANG Y J, WANG J W, et al. Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction[J]. Chinese Journal of Engineering, 2023, 45(7): 1057-1070. DOI: 10.13374/j.issn2095-9389.2022.09.20.005.
|
[7] |
NAMI H, RIZVANDI O B, CHATZICHRISTODOULOU C, et al. Techno-economic analysis of current and emerging electrolysis technologies for green hydrogen production[J]. Energy Conversion and Management, 2022, 269: 116162. DOI: 10.1016/j.enconman. 2022.116162.
|
[8] |
WANG J, GAO Y, KONG H, et al. Non-precious-metal catalysts for alkaline water electrolysis: Operando characterizations, theoretical calculations, and recent advances[J]. Chemical Society Reviews, 2020, 49(24): 9154-9196. DOI: 10.1039/d0cs00575d.
|
[9] |
WAN R D, YUAN T H, WANG L C, et al. Earth-abundant electrocatalysts for acidic oxygen evolution[J]. Nature Catalysis, 2024, 7(12): 1288-1304. DOI: 10.1038/s41929-024-01266-6.
|
[10] |
TANG D, MABAYOJE O, LAI Y Q, et al. In situ growth of Fe(Ni)OOH catalyst on stainless steel for water oxidation[J]. ChemistrySelect, 2017, 2(7): 2230-2234. DOI: 10.1002/slct.2017 00081.
|
[11] |
WU H B, LOU X W D. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J]. Science Advances, 2017, 3(12): eaap9252. DOI: 10.1126/sciadv.aap9252.
|
[12] |
KIM J, LEE C W, KIM S, et al. Electrodeposited NiFe layered double hydroxide on Ni foam for efficient oxygen evolution reaction[J]. Chemistry of Materials, 2020, 32(18): 7624-7632.
|
[13] |
SWARNKAR P, SARFO D K, PANNU A S, et al. Co-electrodeposition of nanostructured Ce-NiOx on stainless-steel substrates for the oxygen evolution reaction under alkaline conditions[J]. Advanced Materials Technologies, 2022, 7(4): 2100705. DOI: 10.1002/admt.202100705.
|
[14] |
DAI W J, YANG X Y, HU F Y, et al. Solution combustion synthesis of hierarchical porous CoNiFeCu0.1 medium-entropy alloy: A highly efficient and robust electrocatalyst for water oxidation[J]. Journal of Alloys and Compounds, 2023, 952: 169987. DOI: 10. 1016/j.jallcom.2023.169987.
|
[15] |
QAYUM A, PENG X, YUAN J F, et al. Highly durable and efficient Ni-FeOx/FeNi3 electrocatalysts synthesized by a facile In situ combustion-based method for overall water splitting with large current densities[J]. ACS Applied Materials & Interfaces, 2022, 14(24): 27842-27853. DOI: 10.1021/acsami.2c04562.
|
[16] |
YU D S, HAO Y X, HAN S L, et al. Ultrafast combustion synthesis of robust and efficient electrocatalysts for high-current-density water oxidation[J]. ACS Nano, 2023. DOI: 10.1021/acsnano.2c11939.
|
[17] |
TAMURA H, MITA K, TANAKA A, et al. Mechanism of hydroxylation of metal oxide surfaces[J]. Journal of Colloid and Interface Science, 2001, 243(1): 202-207. DOI: 10.1006/jcis. 2001.7864.
|
[18] |
VOIRY D, CHHOWALLA M, GOGOTSI Y, et al. Best practices for reporting electrocatalytic performance of nanomaterials[J]. ACS Nano, 2018, 12(10): 9635-9638. DOI: 10.1021/acsnano.8b07700.
|
[19] |
李航洋, 周凌, 韩博鸣, 等. CoFeOx/MoO2准平行纳米阵列电极的析氢性能[J]. 无机化学学报, 2023, 39(7): 1275-1286.
|
|
LI H Y, ZHOU L, HAN B M, et al. Hydrogen evolution performance of CoFeOx/MoO2 quasi-parallel nanoarray electrode[J]. Chinese Journal of Inorganic Chemistry, 2023, 39(7): 1275-1286.
|
[20] |
BUCCI A, GARCÍA-TECEDOR M, CORBY S, et al. Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion[J]. Journal of Materials Chemistry A, 2021, 9(21): 12700-12710. DOI: 10.1039/D1TA00072A.
|
[21] |
NAGAYAMA T, YAMAMOTO T, NAKAMURA T. Thermal expansions and mechanical properties of electrodeposited Fe-Ni alloys in the Invar composition range[J]. Electrochimica Acta, 2016, 205: 178-187. DOI: 10.1016/j.electacta.2016.04.089.
|
[22] |
SMITH R D L, BERLINGUETTE C P. Accounting for the dynamic oxidative behavior of nickel anodes[J]. Journal of the American Chemical Society, 2016, 138(5): 1561-1567. DOI: 10.1021/jacs. 5b10728.
|
[23] |
LI G Q, LI L, ZHANG J H, et al. Enhance the proportion of Fe3+ in NiFe-layered double hydroxides by utilizing citric acid to improve the efficiency and durability of the oxygen evolution reaction[J]. ChemSusChem, 2025, 18(3): e202401582. DOI: 10.1002/cssc. 202401582.
|
[24] |
ZHANG B, WANG L, CAO Z, et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics[J]. Nature Catalysis, 2020, 3(12): 985-992. DOI: 10.1038/s41929-020-00525-6.
|
[25] |
ZHANG N, HU Y, AN L, et al. Surface activation and Ni-S stabilization in NiO/NiS2 for efficient oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2022, 61(35): e202207217. DOI: 10.1002/anie.202207217.
|