储能科学与技术 ›› 2022, Vol. 11 ›› Issue (11): 3510-3520.doi: 10.19799/j.cnki.2095-4239.2022.0319
徐滨1(), 王锐2(), 苏伟1(), 何广利2, 缪平2
收稿日期:
2022-06-13
修回日期:
2022-07-14
出版日期:
2022-11-05
发布日期:
2022-11-09
通讯作者:
王锐,苏伟
E-mail:15733011361@163.com;rui.wang.ej@chnenergy.com.cn;suweihb@tju.edu.cn
作者简介:
徐滨(1998—),男,硕士研究生,研究方向为可再生能源制氢,E-mail:15733011361@163.com;
基金资助:
Bin XU1(), Rui WANG2(), Wei SU1(), Guangli HE2, Ping MIAO2
Received:
2022-06-13
Revised:
2022-07-14
Online:
2022-11-05
Published:
2022-11-09
Contact:
Rui WANG, Wei SU
E-mail:15733011361@163.com;rui.wang.ej@chnenergy.com.cn;suweihb@tju.edu.cn
摘要:
氢是碳中和能源系统的重要组成部分,为重工业和长途运输等难以脱碳的行业提供了一种可替代路径。可再生能源电解制氢是最可持续的制氢技术,为整合间歇性可再生能源提供了额外的灵活性,并可以作为季节性储能。质子交换膜(PEM)电解水技术具有电流密度高、运行压力高、电解槽体积小、整体性和灵活性好等优势,与波动性较大的风电和光伏有很好的适配性,但目前的主要挑战之一是其成本较高。本文对PEM电解水技术的成本组成及应用现状进行了总结,并详细分析了PEM电解槽中的关键材料、制备工艺及组件制造的研究进展。研究认为,通过新型的结构设计、制备策略和制造技术,可以提升贵金属催化剂的活性和利用率,减少膜厚度以降低欧姆极化,降低双极板的原料和加工成本,改善电解槽的结构设计和组装。最后提出了未来PEM电解水技术的研发方向和目标,通过材料性能的技术创新、组件制造工艺的优化、电解槽生产规模的扩大,能显著降低PEM电解水设备的成本,加速PEM制氢的规模化发展。
中图分类号:
徐滨, 王锐, 苏伟, 何广利, 缪平. 质子交换膜电解水技术关键材料的研究进展与展望[J]. 储能科学与技术, 2022, 11(11): 3510-3520.
Bin XU, Rui WANG, Wei SU, Guangli HE, Ping MIAO. Research progress and prospect of key materials of proton exchange membrane water electrolysis[J]. Energy Storage Science and Technology, 2022, 11(11): 3510-3520.
1 | CHI J, YU H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394. |
2 | RASHID M D, MESFER M K, NASSEM H, et al. Hydrogen production by water electrolysis: A review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis[J/OL]. International Journal of Engineering and Advanced Technology, 2015, 4(3). https://www.ijeat.org/portfolio-item/C3749024315/ |
3 | KUMAR S S, HIMABINDU V. Hydrogen production by PEM water electrolysis-A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. |
4 | BABIC U, SUERMANN M, BÜCHI F N, et al. Critical review-Identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of the Electrochemical Society, 2017, 164(4): F387-F399. |
5 | 俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. |
YU H M, SHAO Z G, HOU M, et al. Hydrogen production by water electrolysis: Progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. | |
6 | FENG Q, YUAN X Z, LIU G Y, et al. A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2017, 366: 33-55. |
7 | TAIBI E, MIRANDA R, CARMO M. Green hydrogen cost reduction[R/OL]. International Renewable Energy Agency (IRENA), 2020[2021-12-01]. https://www.irena.org/publications/2020/Dec/Green-hydrogen-cost-reduction. |
8 | CHENG J B, ZHANG H M, CHEN G B, et al. Study of IrxRu1- xO2 oxides as anodic electrocatalysts for solid polymer electrolyte water electrolysis[J]. Electrochimica Acta, 2009, 54(26): 6250-6256. |
9 | SIRACUSANO S, DIJK N V, PAYNE-JOHNSON E, et al. Nanosized IrOx and IrRuOx electrocatalysts for the O2 evolution reaction in PEM water electrolysers[J]. Applied Catalysis B: Environmental, 2015, 164: 488-495. |
10 | XU C B, MA L R, LI J L, et al. Synthesis and characterization of novel high-performance composite electrocatalysts for the oxygen evolution in solid polymer electrolyte (SPE) water electrolysis[J]. International Journal of Hydrogen Energy, 2012, 37(4): 2985-2992. |
11 | JIANG G, YU H M, HAO J K, et al. An effective oxygen electrode based on Ir0.6Sn0.4O2 for PEM water electrolyzers[J]. Journal of Energy Chemistry, 2019, 39: 23-28. |
12 | PUTHIYAPURA V K, MAMLOUK M, PASUPATHI S, et al. Physical and electrochemical evaluation of ATO supported IrO2 catalyst for proton exchange membrane water electrolyser[J]. Journal of Power Sources, 2014, 269: 451-460. |
13 | ZHAO S, STOCK A, RASIMICK B, et al. Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers[J]. Journal of the Electrochemical Society, 2018, 165(2): F82. |
14 | 李佳坤. 质子交换膜(PEM)水电解制氢用新型析氧电极研究[D]. 长沙: 湖南大学, 2019. |
LI J K. Research on novel oxygen evolution electrode for proton exchange membrane water electrolysis[D]. Changsha: Hunan University, 2019. | |
15 | SUI S, MA L R, ZHAI Y C. Investigation on the proton exchange membrane water electrolyzer using supported anode catalyst[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(1): 8-11. |
16 | PHAM C V, BÜHLER M, KNÖPPEL J, et al. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Applied Catalysis B: Environmental, 2020, 269: doi: 10.1016/j.apcatb.2020.118762. |
17 | ZHU J H, WEI M, MENG Q H, et al. Ultrathin-shell IrCo hollow nanospheres as highly efficient electrocatalysts towards the oxygen evolution reaction in acidic media[J]. Nanoscale, 2020, 12(47): 24070-24078. |
18 | PARK J, SA Y J, BAIK H, et al. Iridium-based multimetallic Nanoframe@Nanoframe structure: An efficient and robust electrocatalyst toward oxygen evolution reaction[J]. ACS Nano, 2017, 11(6): 5500-5509. |
19 | LEWINSKI K, VLIET D V D, LUOPA S M. NSTF advances for PEM electrolysis-The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers[J]. ECS transactions, 2015, 69(17):893-917. |
20 | JIANG G, YU H M, LI Y H, et al. Low-loading and highly stable membrane electrode based on an Ir@WOxNR ordered array for PEM water electrolysis[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15073-15082. |
21 | SHI Y X, PAN H L, XIA J Y, et al. Designing of highly efficient oxygen evolution reaction electrocatalysts utilizing A correlation factor: Theory and experiment[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30533-30541. |
22 | CHONG L N, WANG H, LIU D J. PGM-Free Oer Catalysts for PEM Electrolyzer Application[C]//ECS Meeting Abstracts. IOP Publishing, 2019 (29): 1443. |
23 | KIRSHENBAUM M J, RICHTER M, DASOG M. Electrochemical water oxidation in acidic solution using titanium diboride (TiB2) catalyst[J]. ChemCatChem, 2019, 11(16): 3877-3881. |
24 | SIRACUSANO S, BAGLIO V, STASSI A, et al. Performance analysis of short-side-chain Aquivion® perfluorosulfonic acid polymer for proton exchange membrane water electrolysis[J]. Journal of Membrane Science, 2014, 466: 1-7. |
25 | SUN S C, SHAO Z G, YU H M, et al. Investigations on degradation of the long-term proton exchange membrane water electrolysis stack[J]. Journal of Power Sources, 2014, 267: 515-520. |
26 | JANG I Y, KWEON O H, KIM K E, et al. Application of polysulfone (PSf)-and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis[J]. Journal of Membrane Science, 2008, 322(1): 154-161. |
27 | 唐金库, 巴俊洲, 蒋亚雄, 等. 等离子体刻蚀对Nafion膜性能的影响[J]. 舰船科学技术, 2007, 29(6): 135-138. |
TANG J K, BA J Z, JIANG Y X, et al. Effects of plasma etching on Nafion membrane performances[J]. Ship Science and Technology, 2007, 29(6): 135-138. | |
28 | 史言, 杨芬, 胡晓宏, 等. Nafion膜的处理对PEM水电解器中氧气纯度的影响[J]. 航天医学与医学工程, 2013, 26(5): 391-393. |
SHI Y, YANG F, HU X H, et al. Effects of nafion membrane modification on oxygen purity in PEM water electrolyze[J]. Space Medicine & Medical Engineering, 2013, 26(5): 391-393. | |
29 | BUKOLA S, CREAGER S. Graphene-based proton transmission and hydrogen crossover mitigation in electrochemical hydrogen pump cells[J]. ECS Transactions, 2019, 92(8): 439. |
30 | PARK J, KANG Z Y, BENDER G, et al. Roll-to-roll production of catalyst coated membranes for low-temperature electrolyzers[J]. Journal of Power Sources, 2020, 479: doi:10.1016/j.jpowsour.2020.228819 |
31 | KIM T H, YI J Y, JUNG C Y, et al. Solvent effect on the Nafion agglomerate morphology in the catalyst layer of the proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(1): 478-485. |
32 | XIE Z Q, YU S L, YANG G Q, et al. Optimization of catalyst-coated membranes for enhancing performance in proton exchange membrane electrolyzer cells[J]. International Journal of Hydrogen Energy, 2021, 46(1): 1155-1162. |
33 | MAUGER S A, NEYERLIN K C, YANG-NEYERLIN A C, et al. Gravure coating for roll-to-roll manufacturing of proton-exchange-membrane fuel cell catalyst layers[J]. Journal of the Electrochemical Society, 2018, 165(11): F1012-F1018. |
34 | MAYYAS A, MANN M. Emerging manufacturing technologies for fuel cells and electrolyzers[J]. Procedia Manufacturing, 2019, 33: 508-515. |
35 | ITO H, MAEDA T, NAKANO A, et al. Influence of pore structural properties of current collectors on the performance of proton exchange membrane electrolyzer[J]. Electrochimica Acta, 2013, 100: 242-248. |
36 | 张萍俊, 孙树成, 俞红梅, 等. 不同材料作为阳极扩散层对质子交换膜水电解池性能的影响[J]. 可再生能源, 2019, 37(10): 1429-1433. |
ZHANG P J, SUN S C, YU H M, et al. Influence of different materials as anode diffusion layer on performance of PEMWE[J]. Renewable Energy Resources, 2019, 37(10): 1429-1433. | |
37 | KANG Z Y, MO J K, YANG G Q, et al. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting[J]. Energy & Environmental Science, 2017, 10(1): 166-175. |
38 | KANG Z Y, YANG G Q, MO J K, et al. Developing titanium micro/nano porous layers on planar thin/tunable LGDLs for high-efficiency hydrogen production[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14618-14628. |
39 | MO J K, DEHOFF R R, PETER W H, et al. Additive manufacturing of liquid/gas diffusion layers for low-cost and high-efficiency hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(4): 3128-3135. |
40 | TOOPS T J, BRADY M P, ZHANG F Y, et al. Evaluation of nitrided titanium separator plates for proton exchange membrane electrolyzer cells[J]. Journal of Power Sources, 2014, 272: 954-960. |
41 | LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Durable membrane electrode assemblies for proton exchange membrane electrolyzer systems operating at high current densities[J]. Electrochimica Acta, 2016, 210: 502-511. |
42 | YANG G Q, MO J K, KANG Z Y, et al. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting[J]. Applied Energy, 2018, 215: 202-210. |
43 | BAREIß K, DE LA RUA C, MÖCKL M, et al. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems[J]. Applied Energy, 2019, 237: 862-872. |
44 | 刘晓天, 尹永利, 李明宇, 等. 新型低成本PEM水电解槽的研制与测试[J]. 航天医学与医学工程, 2020, 33(4): 350-355. |
LIU X T, YIN Y L, LI M Y, et al. Development and test of a low cost new PEM water electrolyzer[J]. Space Medicine & Medical Engineering, 2020, 33(4): 350-355. | |
45 | 邓庆. 一种纯水制氢PEM电解槽: CN214937843U[P], 2021-11-30 |
DENG Q. A pure water to hydrogen PEM electrolyzer: CN214937843U[P], 2021-11-30 | |
46 | 黄天旗, 黄立. 顶丝反压式PEM电解槽机构: CN216427426U[P]. 2022-05-03. |
HUANG T Q, HUANG L. Jackscrew back pressure type PEM electrolytic bath mechanism: CN216427426U[P]. 2022-05-03. | |
47 | KIM H, PARK M, LEE K S. One-dimensional dynamic modeling of a high-pressure water electrolysis system for hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(6): 2596-2609. |
48 | ESPINOSA-LÓPEZ M, DARRAS C, POGGI P, et al. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer[J]. Renewable Energy, 2018, 119: 160-173. |
49 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
50 | AßMANN P, GAGO A S, GAZDZICKI P, et al. Toward developing accelerated stress tests for proton exchange membrane electrolyzers[J]. Current Opinion in Electrochemistry, 2020, 21: 225-233. |
[1] | 栗志展, 秦金磊, 梁嘉宁, 李峥嵘, 王瑞, 王得丽. 高镍三元层状锂离子电池正极材料:研究进展、挑战及改善策略[J]. 储能科学与技术, 2022, 11(9): 2900-2920. |
[2] | 尹浩, 唐志伟, 王昊, 金翼, 丁玉龙. 基于高密度复合相变储热材料电热锅炉的分时配比供热系统[J]. 储能科学与技术, 2022, 11(9): 3003-3010. |
[3] | 郭凯强, 车海英, 张浩然, 廖建平, 周煌, 张云龙, 陈航达, 申展, 刘海梅, 马紫峰. B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(9): 2980-2988. |
[4] | 贡淑雅, 王跃, 李萌, 邱景义, 王洪, 文越华, 徐斌. 锂离子电池负极材料TiNb2O7 的研究进展[J]. 储能科学与技术, 2022, 11(9): 2921-2932. |
[5] | 王君雷, 张第玲, 王昆, 许东东, 徐祥贵, 姚华, 刘文巍, 黄云. 碳酸盐/高炉矿渣定型复合相变储热材料的制备与性能[J]. 储能科学与技术, 2022, 11(9): 3028-3034. |
[6] | 朱璟, 武怿达, 郝峻丰, 岑官骏, 乔荣涵, 申晓宇, 田孟羽, 季洪祥, 金周, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.6.1—2022.7.31)[J]. 储能科学与技术, 2022, 11(9): 3035-3050. |
[7] | 尹涛, 贾隆舟, 常修亮, 戴作强, 郑莉莉. 软包磷酸铁锂电池高电压浮充后热安全研究[J]. 储能科学与技术, 2022, 11(8): 2546-2555. |
[8] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[9] | 张肖洒, 王宏源, 李振彪, 夏志美. 废旧磷酸铁锂电池电极材料的硫酸化焙烧-水浸新工艺[J]. 储能科学与技术, 2022, 11(7): 2066-2074. |
[10] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[11] | 徐进, 丁显, 宫永立, 何广利, 胡婷. 电解水制氢厂站经济性分析[J]. 储能科学与技术, 2022, 11(7): 2374-2385. |
[12] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[13] | 蒋铖一, 钟尊睿, 吴自德, 彭浩. C8H18~C11H24 混合烷烃体系相变材料的热力学性能[J]. 储能科学与技术, 2022, 11(6): 1957-1967. |
[14] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[15] | 王培灿, 万磊, 徐子昂, 许琴, 庞茂斌, 陈金勋, 王保国. 基于界面工程的自支撑催化电极用于电解水制氢[J]. 储能科学与技术, 2022, 11(6): 1934-1946. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||