储能科学与技术 ›› 2022, Vol. 11 ›› Issue (9): 2980-2988.doi: 10.19799/j.cnki.2095-4239.2022.0213

• 创刊十周年专刊 • 上一篇    下一篇

B2O3 包覆NaNi1/3Fe1/3Mn1/3O2 正极材料制备及其电化学性能

郭凯强1(), 车海英2(), 张浩然1, 廖建平2, 周煌2, 张云龙2, 陈航达2, 申展3, 刘海梅1, 马紫峰2,3   

  1. 1.上海电力大学环境与化学工程学院,上海 200090
    2.浙江钠创新能源有限公司,浙江 绍兴 312000
    3.上海交通大学化学工程系,上海,200240
  • 收稿日期:2022-04-20 修回日期:2022-05-08 出版日期:2022-09-05 发布日期:2022-08-30
  • 通讯作者: 车海英 E-mail:gkq0412@163.com;chysyx@sjtu.edu.cn
  • 作者简介:郭凯强(1991—),男,硕士研究生,研究方向为钠离子电池电极材料,E-mail:gkq0412@163.com
  • 基金资助:
    国家自然科学基金项目(22005190);上海市科技启明星计划(20QB1405700)

Preparation and characterization of B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode materials for sodium-ion batteries

Kaiqiang GUO1(), Haiying CHE2(), Haoran ZHANG1, Jianping LIAO2, Huang ZHOU2, Yunlong ZHANG2, Hangda CHEN2, Zhan SHEN3, Haimei LIU1, Zifeng MA2,3   

  1. 1.College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2.Zhejiang NaTRIUM Energy Co. Ltd. , Shaoxing 312000, Zhejiang, China
    3.Department of Chemical Engineering, Shanghai JiaoTong University, Shanghai 200240, China
  • Received:2022-04-20 Revised:2022-05-08 Online:2022-09-05 Published:2022-08-30
  • Contact: Haiying CHE E-mail:gkq0412@163.com;chysyx@sjtu.edu.cn

摘要:

O3型层状氧化物正极材料NaNi1/3Mn1/3Fe1/3O2具有高比容量、低成本和环境友好性等优点,被认为是最有前途的钠离子电池正极材料之一,但在充放电过程中会发生一系列复杂的相变,导致电化学性能较差。本研究报道了一种协同改性方法,以同时提高NaNi1/3Mn1/3Fe1/3O2正极材料的循环稳定性和倍率性能。通过将硼酸粉末和正极材料固相球磨混匀后低温煅烧,在NaNi1/3Mn1/3Fe1/3O2正极材料表面包覆纳米非金属氧化物B2O3。借助X射线衍射仪(XRD)、扫描电子显微技术(SEM)、透射电子显微镜(TEM)和电化学技术等测试手段,对比分析不同包覆量和原材料的形貌和电化学性能,筛选得到最优包覆量为2%(质量分数,余同)。该方法实现了B2O3的均匀包覆,并且没有改变NaNi1/3Mn1/3Fe1/3O2正极材料的晶体结构。通过电化学性能测试表明2% B2O3包覆材料在1 C倍率下循环200圈容量保持率从78%提升至87%。同时,2% B2O3包覆材料的高倍率性能也得到了改善,10 C高倍率下放电比容量从75 mAh/g提升至99 mAh/g。结果表明,这是一种有效且可靠的表面改性策略,可以增强钠离子电池层状氧化物正极材料的电化学性能。

关键词: 硼酸, B2O3包覆, 层状氧化物, 钠离子电池, NaNi1/3Mn1/3Fe1/3O2正极材料

Abstract:

Due to its high capacity, low cost, and environmental safety, layered oxide O3-NaNi1/3Mn1/3Fe1/3O2 is one of the most promising cathode medium recently. However, its complicated phase transitions during the charge-discharge process lead to inferior electrochemical properties. In this study, we report a synergetic modification method to simultaneously increase the rate capacity and cycling stability of the O3-NaNi1/3Mn1/3Fe1/3O2 cathode medium by utilizing B2O3-coating and B3+ doping. The B2O3-coated NaNi1/3Fe1/3Mn1/3O2 cathode was prepared using the ball milling method. Materials with different B2O3 contents were prepared and characterized using X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and electrochemical examinations. The best performing compound was obtained when 2% B2O3 coating was utilized. B2O3 was uniformly distributed between NaNi1/3Fe1/3Mn1/3O2 particles, and the preparation process did not change the crystal structure of NaNi1/3Fe1/3Mn1/3O2. Furthermore, the charge-discharge curves indicated that the capacity retention of 2% B2O3-coated samples was enhanced from 78% to 87% after 200 cycles. B2O3-coated NaNi1/3Mn1/3Fe1/3O2 also exhibited remarkable rate capability (99 mAh/g at a high rate of 10 C, compared to 75 mAh/g for the pristine). These results indicated that the proposed approach is an effective and reliable surface modification strategy for reinforcing the electrochemical properties of layered oxide materials for sodium-ion batteries.

Key words: H3BO3, B2O3 coating, layered oxide, sodium-ion batteries, NaNi1/3Fe1/3Mn1/3O2 cathode material

中图分类号: