1 |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
2 |
WHITTINGHAM M S. Ultimate limits to intercalation reactions for lithium batteries[J]. Chemical Reviews, 2014, 114(23): 11414-11443.
|
3 |
TRAN Q N, KIM I T, HUR J, et al. Composite of nanocrystalline cellulose with tin dioxide as lightweight substrates for high-performance lithium-ion battery[J]. Korean Journal of Chemical Engineering, 2020, 37(5): 898-904.
|
4 |
曹勇, 严长青, 王义飞, 等. 高安全高比能量动力锂离子电池系统路线探索[J]. 储能科学与技术, 2018, 7(3): 384-393.
|
|
CAO Y, YAN C Q, WANG Y F, et al. The technical route exploration of lithium ion battery with high safety and high energy density[J]. Energy Storage Science and Technology, 2018, 7(3): 384-393.
|
5 |
SCROSATI B, GARCHE J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430.
|
6 |
方铮, 曹余良, 胡勇胜, 等. 室温钠离子电池技术经济性分析[J]. 储能科学与技术, 2016, 5(2): 149-158.
|
|
FANG Z, CAO Y L, HU Y S, et al. Economic analysis for room-temperature sodium-ion battery technologies[J]. Energy Storage Science and Technology, 2016, 5(2): 149-158.
|
7 |
王红, 廖小珍, 颉莹莹, 等. 新型移动式钠离子电池储能系统设计与研究[J]. 储能科学与技术, 2016, 5(1): 65-68.
|
|
WANG H, LIAO X Z, XIE Y Y, et al. Design and investigation on portable energy storage device based on sodium-ion batteries[J]. Energy Storage Science and Technology, 2016, 5(1): 65-68.
|
8 |
WANG H, LIAO X Z, YANG Y, et al. Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries[J]. Journal of the Electrochemical Society, 2016, 163(3): A565-A570.
|
9 |
刘欢庆, 高旭, 陈军, 等. 钠离子电池层状氧化物正极:层间滑移,相变与性能[J]. 储能科学与技术, 2020, 9(5): 1327-1339.
|
|
LIU H Q, GAO X, CHEN J, et al. Layered oxide cathode for sodium ion batteries: Interlayer glide, phase transition and performance[J]. Energy Storage Science and Technology, 2020, 9(5): 1327-1339.
|
10 |
XIE Y Y, WANG H, XU G L, et al. In operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation[J]. Advanced Energy Materials, 2016, 6(24): doi: 10.1002/aenm.201601306.
|
11 |
WANG P F, YOU Y, YIN Y X, et al. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance[J]. Advanced Energy Materials, 2018, 8(8): doi: 10.1002/aenm.201701912.
|
12 |
戚兴国, 王伟刚, 胡勇胜, 等. 钠离子电池层状氧化物正极材料的表面修饰研究[J]. 储能科学与技术, 2020, 9(5): 1396-1401.
|
|
QI X G, WANG W G, HU Y S, et al. Surface modification research of layered oxide materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1396-1401.
|
13 |
SUN L Q, XIE Y Y, LIAO X Z, et al. Insight into Ca-substitution effects on O3 -Type NaNi1/3 Fe1/3 Mn1/3 O2 cathode materials for sodium-ion batteries application[J]. Small, 2018, 14(21): doi: 10.1002/smll.201704523.
|
14 |
LI L, WANG H B, HAN W Z, et al. Understanding oxygen redox in Cu-doped P2-Na0.67Mn0.8Fe0.1Co0.1O2 cathode materials for Na-ion batteries[J]. Journal of the Electrochemical Society, 2018, 165(16): A3854-A3861.
|
15 |
YU T Y, HWANG J Y, BAE I T, et al. High-performance Ti-doped O3 -type Na[Tix(Ni0.6Co0.2Mn0.2)1- x]O2 cathodes for practical sodium-ion batteries[J]. Journal of Power Sources, 2019, 422: 1-8.
|
16 |
孙阳, 王红, 车海英, 等. ZrO2包覆对层状氧化物正极材料储钠性能的改善[J]. 过程工程学报, 2022, 22(1): 72-78.
|
|
SUN Y, WANG H, CHE H Y, et al. Improved sodium storage performance of layered oxide cathode materials via ZrO2 coating[J]. The Chinese Journal of Process Engineering, 2022, 22(1): 72-78.
|
17 |
SUN H H, HWANG J Y, YOON C S, et al. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65 Co0.08 Mn0.27]O2 cathode for sodium-ion batteries[J]. ACS Nano, 2018, 12(12): 12912-12922.
|
18 |
JO J H, CHOI J U, KONAROV A, et al. Sodium-ion batteries: Building effective layered cathode materials with long-term cycling by modifying the surface via sodium phosphate[J]. Advanced Functional Materials, 2018, 28(14): doi:10.1002/adfm.201705968.
|
19 |
ZHOU A J, WANG W H, LIU Q, et al. Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification[J]. Journal of Power Sources, 2017, 362: 131-139.
|
20 |
LI J H, LIU Z Q, WANG Y F, et al. Investigation of facial B2O3 surface modification effect on the cycling stability and high-rate capacity of LiNi1/3Co1/3Mn1/3O2 cathode[J]. Journal of Alloys and Compounds, 2020, 834: doi: 10.1016/j.jallcom.2020.155150.
|
21 |
PAN L C, XIA Y G, QIU B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1- xBxO2 as cathode materials for lithium-ion batteries[J]. Journal of Power Sources, 2016, 327: 273-280.
|
22 |
CHEN T, LI X, WANG H, et al. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material[J]. Journal of Power Sources, 2018, 374: 1-11.
|
23 |
CHEN J S, WANG X L, JIN E M, et al. Optimization of B2O3 coating process for NCA cathodes to achieve long-term stability for application in lithium ion batteries[J]. Energy, 2021, 222: 119913.
|
24 |
WANG W Z, WU L Y, LI Z W, et al. Stabilization of a 4.7 V high-voltage nickel-rich layered oxide cathode for lithium-ion batteries through boron-based surface residual lithium-tuned interface modification engineering[J]. ChemElectroChem, 2021, 8(11): 2014-2021.
|
25 |
SUN Y, WANG H, MENG D, et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in situ regeneration[J]. ACS Applied Energy Materials, 2021, 4(3): 2061-2067.
|
26 |
颉莹莹. 基于同步辐射X射线技术原位研究NaNi1/3Fe1/3Mn1/3O2正极材料合成过程、结构与热稳定性[D]. 上海: 上海交通大学, 2019.
|
|
XIE Y Y. Research of synthesis process, structure and thermal stability for NaNi1/3Fe1/3Mn1/3O2 cathode material based on in situ synchrotron X-ray techniques[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|