储能科学与技术 ›› 2021, Vol. 10 ›› Issue (3): 813-820.doi: 10.19799/j.cnki.2095-4239.2021.0129

• 固态离子学与储能专刊 • 上一篇    下一篇

合金电极失效机制:体积膨胀?电解液分解?

周琳(), 杨佯, 胡勇胜()   

  1. 中国科学院物理研究所,北京 100190
  • 收稿日期:2021-03-29 修回日期:2021-04-18 出版日期:2021-05-05 发布日期:2021-04-30
  • 通讯作者: 胡勇胜 E-mail:lzhou@ciac.ac.cn;yshu@iphy.ac.cn
  • 作者简介:周琳(1990—),男,博士研究生,主要研究方向为电极电解液界面电化学,E-mail:lzhou@ciac.ac.cn
  • 基金资助:
    国家自然科学基金项目(51725206);中国科学院战略性先导科技专项(XDA21070500);北京自然科学基金-海淀原创创新联合基金(L182056)

Failure mechanism of alloy electrodes Volume change decomposition of electrolyte

Lin ZHOU(), Yang YANG, Yongsheng HU()   

  1. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2021-03-29 Revised:2021-04-18 Online:2021-05-05 Published:2021-04-30
  • Contact: Yongsheng HU E-mail:lzhou@ciac.ac.cn;yshu@iphy.ac.cn

摘要:

合金类材料具有较高的比容量和合适的嵌锂(钠)电位,是一类极具潜力的锂(钠)离子电池负极材料。相比于对合金材料的形貌和结构的控制,微米合金材料更具有成本优势。本文综述了用电解液稳定微米合金材料的研究进展,并揭示体积效应与微米合金电极稳定性的关系:在传统电解液体系中,体积膨胀导致合金电极持续暴露新鲜的界面,加剧了电解液的分解,但体积效应只是表观现象,不是导致合金材料失效的根本原因。电解液持续分解,在粉化的合金材料表面形成电子绝缘的SEI膜,从而导致合金材料电接触缺失才是失效的根本原因。同时,本文也对比了合金电极在储锂和储钠方面的不同:钠离子具有更低的去溶剂化能,使其在合金电极界面处更容易完成去溶剂化过程,此外钠离子与合金电极发生合金化反应的绝对电位更高。这两大优势可以提高电解液的稳定性(减轻电解液的还原分解),因此基于微米合金电极储钠,电解液的选择范围更广。同时本文也展望了用电解液稳定微米合金电极的发展方向,即提高醚类溶剂的耐压窗口,发展基于微米合金电极的高压锂(钠)离子全电池。

关键词: 合金材料, 电解液, 体积效应, 锂/钠离子电池

Abstract:

Alloy-type materials are promising anode materials for lithium/sodium ion batteries owing to their high specific capacity and suitable lithium/sodium intercalation potential. Compared with the control of the morphology and structure of alloy materials, micron alloy materials are more cost effective. This article reviews the research progress in optimizing electrolyte to stabilize micro-alloy materials, and reveals the relationship between volume effect and the stability of micro-alloy electrodes. In the traditional electrolyte system, the volume expansion causes the alloy electrode exposed the fresh interface, which leading the fast decomposition of the electrolyte, but the volume effect is only a phenomenon, not the root cause of the failure of the alloy material. The decomposition of electrolyte can form an electronically insulating SEI on the surface of the pulverized alloy material (leading the alloy material lack of electrical contact), this is the root cause of the failure. At the same time, this article also compares the difference between the alloy electrodes in lithium storage and sodium storage, where sodium ions have lower desolvation energy than lithium ions, which makes it easy to complete the desolvation process at the interface of alloy electrodes. Also, the absolute potential of the alloying reaction between sodium ions and the alloy electrode is higher. These two advantages can improve the stability of the electrolyte (reducing the reduction and decomposition of the electrolyte), so based on the sodium storage mechanism of micron alloy electrode, the choice of electrolyte is wider. At the same time, this article also looks forward to the development direction of using electrolyte to stabilize micron alloy electrodes: increasing the voltage resistance window of ether solvents, and developing high-voltage lithium (sodium) ion full batteries based on the micron alloy electrodes.

Key words: alloy materials, electrolyte, volume change, Li/Na-ion battery

中图分类号: