1 |
PANG Q , LIANG X , KWOK C Y , et al . Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1, 16132, doi: 10.1038/nenergy.2016.132 .
doi: 10.1038/nenergy.2016.132
|
2 |
BRUCE P G , FREUNBERGER S A , HARDWICK L J , et al . Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
|
3 |
YAN J H , LIU X B , LI B Y . Capacity fade analysis of sulfur cathodes in lithium-sulfur batteries[J]. Adv. Sci. (Weinh), 2016, 3, 1600101, doi: 10.1002/advs.201600101 .
doi: 10.1002/advs.201600101
|
4 |
XU R , LU J , AMINE K . Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015, 5(16): 1500408, doi: 10.1002/aenm.201500408 .
doi: 10.1002/aenm.201500408
|
5 |
JI X , LEE K T, NAZAR L F . A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
|
6 |
ZHONG Y J , WANG S F , SHA Y J , et al . Trapping sulfur in hierarchically porous, hollow indented carbon spheres: A high-perfor-mance cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2016, 4(24): 9526-9535.
|
7 |
YE H , YIN Y X , XIN S , et al . Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li-S batteries[J]. Journal of Materials Chemistry A, 2013, 1(22): 6602-6608.
|
8 |
ZHANG C , LYU W, ZHANG W G , et al . Reduction of graphene oxide by hydrogen sulfide: A promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Advanced Energy Materials, 2014, 4(7): 1301565, doi: 10.1002/aenm.201301565 .
doi: 10.1002/aenm.201301565
|
9 |
SUN L , LI M Y , JIANG Y ,et al . Sulfur nanocrystals confined in carbon nanotube network as a binder-free electrode for high-performance lithium sulfur batteries[J]. Nano Letters, 2014, 14(7): 4044-4049.
|
10 |
XIE J , YANG J , ZHOU X Y , et al . Preparation of three-dimensional hybrid nanostructure-encapsulated sulfur cathode for high-rate lithium sulfur batteries[J]. Journal of Power Sources, 2014, 253: 55-63.
|
11 |
CHEN L , FENG J , ZHOU H , et al . Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for high-performance lithium sulfur battery cathodes[J]. Journal of Materials Chemistry A, 2017, 5(16): 7403-7415.
|
12 |
MA L , CHEN R , ZHU G , et al . Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries[J]. ACS Nano, 2017, 11(7): 7274-7283.
|
13 |
TAO X Y , WANG J G , LIU C , et al . Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7, 11203, doi:10.1038/ncomms11203 .
doi: 10.1038/ncomms11203
|
14 |
OSADA N , BUCUR C B , ASO H, et al . The design of nanostructured sulfur cathodes using layer by layer assembly[J]. Energy & Environmental Science, 2016, 9(5): 1668-1673.
|
15 |
HWANG J Y , KIM H M , LEE S K, et al . High-energy, high-rate, lithium-sulfur batteries: Synergetic effect of hollow Tio2-webbed carbon nanotubes and a dual functional carbon-paper interlayer[J]. Advanced Energy Materials, 2016, 6(1): 1501480, doi: 10.1002/aenm.201670001 .
doi: 10.1002/aenm.201670001
|
16 |
SHAIBANI M , AKBARI A , SHEATH P , et al . Suppressed polysulfide crossover in Li-S batteries through a high-flux graphene oxide membrane supported on a sulfur cathode[J]. ACS Nano, 2016, 10(8): 7768-7779.
|
17 |
SUO L , HU Y S , LI H , et al . A new class of Solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nature Communications, 2013, 4(2): 66-78.
|
18 |
WANG L N , LIU J Y , YUAN S Y , et al . To mitigate self-discharge of lithium-sulfur batteries by optimizing ionic liquid electrolytes[J]. Energy & Environmental Science, 2016, 9(1): 224-231.
|
19 |
ZHANG S S , READ J A . A new direction for the performance improvement of rechargeable lithium/sulfur batteries[J]. Journal of Power Sources, 2012, 200: 77-82.
|
20 |
HE F , WU X J , QIAN J F , et al . Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism[J]. Journal of Materials Chemistry A, 2018, 6(46): 23396-23407.
|
21 |
LOCHALA J , LIU D Y , WU B B , et al . Research progress toward the practical applications of lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(29): 24407-24421.
|
22 |
SUO L M , HU Y S , LI H , et al . A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries[J]. Nat. Commun., 2013, 4, 1481, doi: 10.1038/ncomms2513 .
doi: 10.1038/ncomms2513
|