1 |
DANUTA H, JULIUSZ U. Electric dry cells and storage batteries: US3043896A[P]. 1962.
|
2 |
NOLE D A, MOSS V. Battery employing lithium-sulphur electrodes with non-aqueous electrolyte: US3532543A[P]. 1970.
|
3 |
MARTIN R P, DOUB W H, ROBERTS J L, et al. Electrochemical reduction of sulfur in aprotic solvents[J]. Inorganic Chemistry, 1973, 12(8): 1921-1925.
|
4 |
RAUH R D, SHUKER F S, MARSTON J M, et al. Formation of lithium Polysulfides in aprotic media[J]. Journal of Inorganic Nuclear Chemistry, 1977, 39(10): 1761-1766.
|
5 |
FARRINGTON G C, ROTH W L. Sealed lithium-solid sulfur cell: US3953231A[P]. 1976.
|
6 |
MIKHAYLIK Y V, AKRIDGE J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of The Electrochemical Society, 2004, 151(11): A1969-A1976.
|
7 |
WANG Jiulin, YANG Jun, XIE Jingying, et al. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries[J]. Advanced Materials, 2002, 14(13/14): 963-965.
|
8 |
YIN Lichao, WANG Jiulin, YANG Jun, et al. A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries[J]. Journal of Materials Chemistry, 2011, 21(19): 6807-6810.
|
9 |
WEI Shuya, MA Lin, HENDRICKSON K E, et al. Metal-sulfur battery cathodes based on PAN-sulfur composites[J]. Journal of the American Chemical Society, 2015, 137(37): 12143-12152.
|
10 |
JI Xiulei, Kyu Tae LEE, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
|
11 |
CAO Yuliang, LI Xiaolin, AKSAY I A, et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries[J]. Physical Chemistry Chemical Physics, 2011, 13(17): 7660-7665.
|
12 |
ZHOU Guangmin, PEI Songfeng, LI Lu, et al. A graphene-pure-sulfur sandwich structure for ultrafast, long-life lithium-sulfur batteries[J]. Advanced Materials, 2014, 26(4): 625-631.
|
13 |
ZHENG Guangyuan, YANG Yuan, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10): 4462-4467.
|
14 |
GUO Juchen, XU Yunhua, WANG Chunsheng. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries[J]. Nano Letters, 2011, 11(10): 4288-4294.
|
15 |
SCHUSTER J, HE Guang, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2012, 51(15): 3591-3595.
|
16 |
ZHENG Jianming, TIAN Jian, WU Dangxin, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014, 14(5): 2345-2352.
|
17 |
Zhi Wei SEH, LI Weiyang, CHA J J, et al.Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4(1): 1-6.
|
18 |
Zhi Wei SEH, YU Jung Ho, LI Weiyang, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications, 2014, 5(1): 1-8.
|
19 |
YUAN Zhe, PENG Hongjie, HOU Tingzheng, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527.
|
20 |
SUN Zhenhua, ZHANG Jingqi, YIN Lichang, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 14627.
|
21 |
CUI Zhiming, ZU Chenxi, ZHOU Weidong, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931.
|
22 |
YIN Yaxia, XIN Sen, GUO Yuguo, et al. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angewandte Chemie International Edition, 2013, 52(50): 13186-13200.
|
23 |
MANTHIRAM A, FU Yongzhu, CHUNG Shengheng, et al. Rechargeable lithium-sulfur batteries[J]. Chemical Reviews, 2014, 114(23): 11751-11787.
|
24 |
FU Chengyin, GUO Juchen. Challenges and current development of sulfur cathode in lithium-sulfur battery[J]. Current Opinion in Chemical Engineering, 2016, 13: 53-62.
|
25 |
PANG Quan, LIANG Xiao, KWOK Chun Yuen, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016, 1(9): 1-11.
|
26 |
WANG Qiang, ZHENG Jianming, WALTER E, et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries[J]. Journal of the Electrochemical Society, 2015, 162(3): A474-A478.
|
27 |
ZOU Qingli, LU Yichun. Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study[J]. The Journal of Physical Chemistry Letters, 2016, 7(8): 1518-1525.
|
28 |
RAJPUT N N, MURUGESAN V, SHIN Yongwoo, et al. Elucidating the Solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions[J]. Chemistry of Materials, 2017, 29(8): 3375-3379.
|
29 |
WANG Hui, ADAMS B D, PAN Huilin, et al. Tailored reaction route by micropore confinement for Li-S batteries operating under lean electrolyte conditions[J]. Advanced Energy Materials, 2018, 8(21): 1800590.
|
30 |
SONG Yingze, CAI Wenlong, KONG Long, et al. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects[J]. Advanced Energy Materials, 2020, 10(11): 1901075.
|
31 |
XIAO Lifen, CAO Yuliang, XIAO Jie, et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life[J]. Advanced Materials, 2012, 24(9): 1176-1181.
|
32 |
Zhi Wei SEH, LI Weiyang, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4(1): 1331.
|
33 |
LIANG Xiao, GARSUCH A, NAZAR L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2015, 54(13): 3907-3911.
|
34 |
HAGEN M, HANSELMANN D, AHLBRECHT K, et al. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells[J]. Advanced Energy Materials, 2015, 5(16): 1401986.
|
35 |
Dongping LYU, ZHENG Jianming, LI Qiuyan, et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes[J]. Advanced Energy Materials, 2015, 5(16): 1402290.
|
36 |
EROGLU D, ZAVADIL K R, GALLAGHER K G. Critical link between materials chemistry and cell-level design for high energy density and low cost lithium-sulfur transportation battery[J]. Journal of The Electrochemical Society, 2015, 162(6): A982-A990.
|
37 |
Dongping LYU, LI Qiuyan, LIU Jian, et al. Enabling high-energy-density cathode for lithium-sulfur batteries[J]. ACS Applied Materials Interfaces, 2018, 10(27): 23094-23102.
|
38 |
GAO Han, WU Qiang, HU Yixin, et al. Revealing the rate-limiting Li-ion diffusion pathway in ultrathick electrodes for Li-ion batteries[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5100-5104.
|
39 |
DÖRFLER S, ALTHUES H, HÄRTEL P, et al. Challenges and key parameters of lithium-sulfur batteries on pouch cell level[J]. Joule, 2020, 4(3): 539-554.
|
40 |
CHENG Xinbing, YAN Chong, HUANG Jiaqi, et al. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection[J]. Energy Storage Materials, 2017, 6: 18-25.
|
41 |
ZHU Kunlei, WANG Chao, CHI Zixiang, et al. How far away are lithium-sulfur batteries from commercialization?[J]. Frontiers in Energy Research, 2019, 7: 123.
|
42 |
CHEN Junzheng, HENDERSON W A, PAN Huilin, et al. Improving lithium-sulfur battery performance under lean electrolyte through nanoscale confinement in soft swellable gels[J]. Nano Letters, 2017, 17(5): 3061-3067.
|
43 |
PANG Quan, LIANG Xiao, KWOK Chun Yuen, et al. A comprehensive approach toward stable lithium-sulfur batteries with high volumetric energy density[J]. Advanced Energy Materials, 2017, 7(6): 1601630.
|
44 |
FANG Ruopian, ZHAO Shiyong, HOU Pengxiang, et al. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries[J]. Advanced Materials, 2016, 28(17): 3374-3382.
|
45 |
CHENG Lei, CURTISS L A, ZAVADIL K R, et al. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries[J]. ACS Energy Letters, 2016, 1(3): 503-509.
|
46 |
PENG Hongjie, HUANG Jiaqi, CHENG Xinbing, et al. Review on high-loading and high-energy lithium-sulfur batteries[J] Advanced Energy Materials, 2017, 7(24): 1700260.
|
47 |
CHUNG Sheng Heng, CHANG Chi Hao, MANTHIRAM A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable[J]. Advanced Functional Materials, 2018, 28(28): 1801188.
|
48 |
PAN Huilin, CHEN Junzheng, CAO Ruiguo, et al. Non-encapsulation approach for high-performance Li-S batteries through controlled nucleation and growth[J]. Nature Energy, 2017, 2(10): 813-820.
|
49 |
KONG Long, JIN Qi, HUANG Jiaqi, et al. Nonuniform redistribution of sulfur and lithium upon cycling: probing the origin of capacity fading in lithium-sulfur pouch cells[J]. Energy Technology, 2019, 7(12): 1900111.
|
50 |
KONG Long, JIN Qi, ZHANG Xitian, et al. Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2019, 39: 17-22.
|
51 |
LIU Jun, BAO Zhenan, CUI Yi, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4(3): 180-186.
|
52 |
PAN Huilin, HAN Kee Sung, ENGELHARD M H, et al. Addressing passivation in lithium-sulfur battery under lean electrolyte condition[J]. Advanced Functional Materials, 2018, 28(38): 1707234.
|
53 |
NIU Chaojiang, Hongkyung LEE, CHEN Shuru, et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles[J]. Nature Energy, 2019, 4(7): 551-559.
|
54 |
NIU Chaojiang, PAN Huilin, XU Wu, et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions[J]. Nature Nanotechnology, 2019, 14(6): 594.
|