1 |
KATO T, YOSHIO M, ICHIKAWA T, et al. Transport of ions and electrons in nanostructured liquid crystals[J]. Nature Reviews Materials, 2017, 2(4): 17001.
|
2 |
Kimura K, Hirao M, Yokoyama M. Synthesis of a crowned azobenzene liquid crystal and its application to thermoresponsive lon-conducting films[J]. Journal of Materials Chemistry, 1991, 1(2): 293-294.
|
3 |
PERCEC V, JOHANSSON G, HECK J, et al. Molecular recognition directed self-assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-l,4,7,1O,l3- pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyl-oxy) benzoate[J]. Journal of the Chemical Society Perkin Transactions, 1993, 1: 1411-1420.
|
4 |
OHTAKE T, OGASAWARA M, ITO-AKITA K, et al. Liquid-crystalline complexes of mesogenic dimers containing oxyethylene moieties with LiCF3SO3: Self-organized ion conductive materials[J]. Chemistry of Materials, 2000, 12: 782-789.
|
5 |
HÖGBERG D, SOBERATS B, UCHIDA S, et al. Nanostructured two-component liquid-crystalline electrolytes for high-temperature dye-sensitized solar cells[J]. Chemistry of Materials, 2014, 26(22): 6496-6502.
|
6 |
HÖGBERG D, SOBERATS B, YATAGAI R, et al. Liquid-crystalline dye-sensitized solar cells: Design of two-dimensional molecular assemblies for efficient ion transport and thermal stability[J]. Chemistry of Materials, 2016, 28(18): 6493-6500.
|
7 |
SHIMURA H, YOSHIO M, HOSHINO K, et al. Noncovalent approach to one-dimensional ion conductors: enhancement of ionic conductivities in nanostructured columnar liquid crystals[J]. Journal of the American Chemical Society, 2008, 130: 1759-1765.
|
8 |
YOSHIO M, MUKAI T, OHNO H, et al. One-dimensional ion transport in self-organized columnar ionic liquids[J]. Journal of the American Chemical Society, 2003, 126: 994-995.
|
9 |
YOSHIO M, KAGATA T, HOSHINO K, et al. One-dimensional ion-conductive polymer films: Alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals[J]. Journal of the American Chemical Society, 2006, 128: 5570-5577.
|
10 |
ICHIKAWA T, YOSHIO M, HAMASAKI A, et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: Formation of nano-ion channel networks[J]. Journal of the American Chemical Society, 2007, 129: 10662-10663.
|
11 |
ICHIKAWA T, YOSHIO M, HAMASAKI A, et al. Induction of thermotropic bicontinuous cubic phases in liquid-crystalline ammonium and phosphonium salts[J]. Journal of the American Chemical Society, 2012, 134(5): 2634-2643.
|
12 |
SOBERATS B, YOSHIO M, ICHIKAWA T, et al. 3D Anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid[J]. Journal of the American Chemical Society, 2013, 135(41): 15286-15289.
|
13 |
CHOW C F, ROY V A L, YE Z, et al. Novel high proton conductive material from liquid crystalline 4-(octadecyloxy)phenylsulfonic acid[J]. Journal of Materials Chemistry, 2010, 20(30): 6245-6249.
|
14 |
SHIMURA H, YOSHIO M, HAMASAKI A, et al. Electric-field-responsive lithium-ion conductors of propylenecarbonate-based columnar liquid crystals[J]. Advanced Materials, 2009, 21(16): 1591-1594.
|
15 |
EISELE A, KYRIAKOS K, BHANDARY R, et al. Structure and ionic conductivity of liquid crystals having propylene carbonate units[J]. Journal of Materials Chemistry A, 2015, 3(6): 2942-2953.
|
16 |
SAKUDA J, HOSONO E, YOSHIO M, et al. Liquid-crystalline electrolytes for lithium-ion batteries: Ordered assemblies of a mesogen-containing carbonate and a lithium salt[J]. Advanced Functional Materials, 2015, 25(8): 1206-1212.
|
17 |
ONUMA T, HOSONO E, TAKENOUCHI M, et al. Noncovalent approach to liquid-crystalline ion conductors: High-rate performances and room-temperature operation for Li-ion batteries[J]. ACS Omega, 2018, 3(1): 159-166.
|
18 |
BOGDANOWICZ K A, GANCARZ P, FILAPEK M, et al. Solvent-free thiophene-based electrolytes: Synthesis of new liquid-crystalline ionic conductors for batteries: part I[J]. Dalton Transactions, 2018, 47(44): 15714-15724.
|
19 |
STOEVA Z, LU Z, INGRAM M D, et al. A new polymer electrolyte based on a discotic liquid crystal triblock copolymer[J]. Electrochimica Acta, 2013, 93: 279-286.
|
20 |
LIU Z, DONG B X, MISRA M, et al. Self-assembly behavior of an oligothiophene-based conjugated liquid crystal and its implication for ionic conductivity characteristics[J]. Advanced Functional Materials, 2019, 29(2): 1805220.
|
21 |
ONUMA T, YOSHIO M, OBI M, et al. Liquid-crystalline behavior and ion transport properties of block-structured molecules containing a perfluorinated ethylene oxide moiety complexed with a lithium salt[J]. Polymer Journal, 2018, 50(9): 889-898.
|
22 |
MAJEWSKI P W, GOPINADHAN M, OSUJI C O. The effects of magnetic field alignment on lithium ion transport in a polymer electrolyte membrane with lamellar morphology[J]. Polymers (Basel), 2019, 11(5): 887.
|
23 |
WANG S, WANG A, YANG C, et al. Six-arm star polymer based on discotic liquid crystal as high performance all-solid-state polymer electrolyte for lithium-ion batteries[J]. Journal of Power Sources, 2018, 395: 137-147.
|
24 |
CAO X, CHENG J, ZHANG X, et al. Composite polymer electrolyte based on liquid crystalline copolymer with high-temperature stability and bendability for all-solid-state lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15(1): 677-695.
|
25 |
GOOSSENS K, LAVA K, BIELAWSKI C W, et al. Ionic liquid crystals: Versatile materials[J]. Chemical Reviews, 2016, 116(8): 4643-4807.
|
26 |
LEE J H, HAN K S, LEE J S, et al. Facilitated ion transport in smectic ordered ionic liquid crystals[J]. Advanced Materials, 2016, 28(42): 9301-9307.
|
27 |
YUAN F, CHI S, DONG S, et al. Ionic liquid crystal with fast ion-conductive tunnels for potential application in solvent-free Li-ion batteries[J]. Electrochimica Acta, 2019, 294: 249-259.
|
28 |
ICHIKAWA T, YOSHIO M, HAMASAKI A, et al. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals[J]. Journal of the American Chemical Society, 2011, 133(7): 2163-2169.
|
29 |
SOBERATS B, YOSHIO M, ICHIKAWA T, et al. Zwitterionic liquid crystals as 1D and 3D lithium ion transport media[J]. Journal of Materials Chemistry A, 2015, 3(21): 11232-11238.
|
30 |
KERR R L, MILLER S A, SHOEMAKER R K, et al. New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly[J]. Journal of the American Chemical Society, 2009, 131(44): 15972-15973.
|