储能科学与技术 ›› 2020, Vol. 9 ›› Issue (6): 1606-1613.doi: 10.19799/j.cnki.2095-4239.2020.0148

• 储能材料与器件 • 上一篇    下一篇

基于溶解沉积机制锂硫电池的研究进展简评

闫梦蝶1(), 李晖2(), 凌敏2(), 潘慧霖1(), 张强3   

  1. 1.浙江大学化学系
    2.浙江大学化学工程与生物工程学院,浙江 杭州 310027
    3.清华大学化学;工程系,北京 100085
  • 收稿日期:2020-04-19 修回日期:2020-05-14 出版日期:2020-11-05 发布日期:2020-10-28
  • 通讯作者: 李晖,凌敏,潘慧霖 E-mail:11937045@zju.edu.cn;minling@zju.edu.cn;panhuilin@zju.edu.cn
  • 作者简介:闫梦蝶(1996—),女,博士研究生,研究方向为水系锌基电池,E-mail:11937045@zju.edu.cn
  • 基金资助:
    国家千人计划青年项目

Brief review of progress in lithium-sulfur batteries based on dissolution-deposition reactions

Mengdie YAN1(), Hui LI2(), Min LING2(), Huilin PAN1(), Qiang ZHANG3   

  1. 1.Department of Chemistry Zhejiang University
    2.College of Chemical and Biological Engineering, Hangzhou 310027, Zhejiang, China
    3.Department of Chemical Engineering, Tsinghua University, Beijing 100085, China
  • Received:2020-04-19 Revised:2020-05-14 Online:2020-11-05 Published:2020-10-28
  • Contact: Hui LI,Min LING,Huilin PAN E-mail:11937045@zju.edu.cn;minling@zju.edu.cn;panhuilin@zju.edu.cn

摘要:

锂硫电池采用高比容量单质硫和锂分别作为正负极电极材料,具有成本低、能量密度高等优点,因而引起了研究者们的广泛关注。目前,通过开发多种功能型的硫正极结构和电解液,锂硫电池的电化学性能已经取得了长足的进步,研究者对锂硫电池的反应路径和机制也得到了深入的认识。然而,在锂硫电池转向实用化的过程中仍面临诸多挑战。本文通过对近年来锂硫电池的研究进展进行分析,探讨了近实际条件下硫正极和锂负极面临的困难,如硫利用率低、循环性能差、锂枝晶和“死锂”等。最后指出未来如何从实际角度理解和解决厚电极、低电解液用量、低N/P比例的情况下硫正极和锂负极持续可逆反应问题,将是提升锂硫电池实际能量密度和循环寿命的关键。将硫电极结构、电解液(质)及金属锂保护三者有机结合,提高硫正极和锂负极的结构和电化学稳定性,构建良好导电网络,充分发挥锂硫电池高能量、低成本的优势,将有望实现锂硫电池的实用化。

关键词: 锂硫电池, 高能量密度, 循环寿命

Abstract:

Lithium-sulfur (Li-S) batteries have attracted tremendous interest in the last decade because of the low cost of S and its high theoretical energy density. Extensive efforts have been devoted to designing advanced conductive cathode networks and functional electrolytes. The performances of Li-S batteries have been significantly improved. The working mechanisms have also been well understood. However, a huge gap still exists between the achievable energy density and their theoretical energy density and the limited cycle life for Li-S batteries under practical conditions, such as high S loading, low electrolyte usage, and low N/P ratio. Based on a brief review of the recent progress of Li-S batteries, we particularly discuss herein the obstacles of Li-S batteries under practical conditions, such as low S utilization, limited cycle life, lithium dendrite, and "dead Li." This review reveals the criticality of understanding and solving the reversible and sustainable reactions for S and Li metal under thick electrode, low electrolyte usage, and restricted N/P ratios for the future development of high-energy Li-S batteries. We conclude that a comprehensive solution that combines sulfur electrode architecture, electrolyte, and Li metal protection is important in enhancing the structural stability of Li and S electrodes and conducting networking to realize a high-energy Li-S battery technology and promote its commercialization.

Key words: lithium-sulfur batteries, high energy density, cycle life

中图分类号: