1 |
ARMAND M, TARASCON J. Building better batteries[J]. Nature, 2008, 451: 652-657.
|
2 |
AHN W, KIM K B, JUNG K N, et al. Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. Journal of Power Sources, 2012, 202: 394-399.
|
3 |
LIU X F, ZHANG Q, HUANG J Q, et al. Hierarchical nanostructured composite cathode with carbon nanotubes as conductive scaffold for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2013, 22(2): 341-346.
|
4 |
ZHENG G Y, YANG Y, CHA J J, et al. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries[J]. Nano Letters, 2011, 11(10): 4462-4467.
|
5 |
ZHENG S Y, HAN P, HAN Z, et al. High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery[J]. Scientific Reports, 2014, 4(4842): doi: 10.1038/srep04842.
|
6 |
ZHANG W H, QIAO D, PAN J X, et al. A Li+-conductive microporous carbon-sulfur composite for Li-S batteries[J]. Electrochimica Acta, 2013, 87: 497-502.
|
7 |
MA Z L, DOU S, SHEN A L, et al. Sulfur-doped graphene derived from cycled lithium-sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2015, 54(6): 1888-1892.
|
8 |
JI L W, RAO M M, ZHENG H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525.
|
9 |
SCHUSTER J, HE G, MANDLMEIER B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2012, 51(15): 3591-3595.
|
10 |
YANG Z Z, WANG H Y, LU L, et al. Hierarchical TiO2 spheres as highly efficient polysulfide host for lithium-sulfur batteries[J]. Scientific Reports, 2016, 6: 22990.
|
11 |
CUI Z M, ZU C X, ZHOU W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(32): 6926-6931.
|
12 |
NI L B, WU Z, ZHAO G J, et al. Core-shell structure and interaction mechanism of γ-MnO2 coated sulfur for improved lithium-sulfur batteries[J]. Small, 2017,13(14): 1603466.
|
13 |
SEH Z W, LI W, CHA J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013, 4: 1331-1336.
|
14 |
ZHANG Y Y, ZHAO Y, BAKENOV Z, et al. Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance[J]. Journal of Power Sources, 2014, 270: 326-331.
|
15 |
LIANG X, ZHANG M G, KAISER M R, et al. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries[J]. Nano Energy, 2015, 11: 587-599.
|
16 |
ZHOU W D, YU Y C, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743.
|
17 |
PENG H J, ZHANG Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry[J]. Angewandte Chemie International Edition, 2015, 54(38): 11018-11020.
|
18 |
ZU C X, MANTHIRAM A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2013, 3(8): 1008-1012.
|
19 |
YANG K, GAO Q M, TAN Y L, et al. Biomass-derived porous carbon with micropores and small mesopores for high-performance lithium-sulfur batteries[J]. Chemistry, 2016, 22(10): 3239-3244.
|
20 |
BRUN N, SAKAUSHI K, YU L H, et al. Hydrothermal carbon-based nanostructured hollow spheres as electrode materials for high-power lithium-sulfur batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(16): 6080-6087.
|
21 |
DU J, YANG Y C, FAN Z, et al. Biotemplating fabrication, mechanical and electrical characterizations of NbC nanowire arrays from the bamboo substrate[J]. Journal of Alloys and Compounds, 2013, 560: 142-146.
|
22 |
ZHU Y, ZHAO W D, YE X R. Supercritical preparation and electrochemical study of lithium-sulfur battery cathode materials derived from biomass[J]. Material Sciences, 2019, 9(2): 142-150.
|
23 |
CHEN H W, XIA P T, LEI W X, et al. Preparation of activated carbon derived from biomass and its application in lithium-sulfur batteries[J]. Journal of Porous Materials, 2019, 26(5): 1325-1333.
|
24 |
SONG Y, WANG H, MA Q L, et al. Dandelion derived nitrogen-doped hollow carbon host for encapsulating sulfur in lithium sulfur battery[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3042-3051.
|
25 |
LI J-J, YANG Z-J, ZHAO L, et al. Biowaste-derived three-dimensional nitrogen-doped hierarchically porous carbon materials for lithium-sulfur batteries[J]. Chinese Science Bulletin, 2018, 63(35): 3843-3854.
|
26 |
BENITEZ A, GONZALEZ-TEJERO M, CABALLERO A, et al. Almond shell as a microporous carbon source for sustainable cathodes in lithium(-)sulfur batteries[J]. Materials, 2018, 11(8): 1428.
|
27 |
REN H X, GAO Z M, WU D J, et al. Efficient Pb(Ⅱ) removal using sodium alginate-carboxymethyl cellulose gel beads: preparation, characterization, and adsorption mechanism[J]. Carbohydrate Polymers, 2016, 137: 402-409.
|
28 |
QIN J, HE C N, ZHAO N Q, et al. Graphene networks anchored with Sn@graphene as lithium ion battery anode[J]. ACS Nano, 2014, 8(2): 1728-1738.
|
29 |
LI J Q, LI S, LIU Q, et al. Synthesis of hydrogen-substituted graphyne film for lithium-sulfur battery applications[J]. Small, 2019, 15(13): e1805344.
|
30 |
ZHENG G Y, ZHANG Q F, CHA J J, et al. Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries[J]. Nano Letters, 2013, 13(3): 1265-1270.
|
31 |
LI Y C, MI R, LI S M, et al. Sulfur-nitrogen doped multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries[J]. International Journal of Hydrogen Energy, 2014, 39(28): 16073-16080.
|