储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1211-1225.doi: 10.19799/j.cnki.2095-4239.2021.0630
收稿日期:
2021-11-29
修回日期:
2021-12-13
出版日期:
2022-04-05
发布日期:
2022-04-11
通讯作者:
李维杰
E-mail:xw734@uowmail.edu.au;weijie@uow.edu.au
作者简介:
王心怡(1995—),女,博士研究生,主要研究方向为储能系统界面工程,E-mail:基金资助:
Xinyi WANG(), Weijie LI(), Chao HAN, Huakun LIU, Shixue DOU
Received:
2021-11-29
Revised:
2021-12-13
Online:
2022-04-05
Published:
2022-04-11
Contact:
Weijie LI
E-mail:xw734@uowmail.edu.au;weijie@uow.edu.au
摘要:
水系锌离子电池(ZIBs)由于其安全性好,成本低和环境友好等特点,被认为是非常有潜力的储能系统,得到了广泛的研究。目前尽管在高性能正极材料的研究方面取得了快速进展,但关于锌负极的研究还有不足。为了解决锌负极的固有缺点,在提高锌负极性能和负极保护方面提出了很多策略。本文通过对相关文献的探讨,总结了库仑效率(CE)低和循环性能差是锌负极现阶段面临的挑战,进一步分析了这主要是由于锌负极枝晶生长和腐蚀现象引起。通过回顾近期锌负极自身设计和电解液优化改变锌负极界面特性的研究,分别从锌负极合金化处理,锌负极表面结构改造,锌负极界面保护,电解液锌盐对比,电解液添加剂,凝胶电解液共六个方面详细分析并对比了改善锌负极性能的具体方式。最后概括了锌离子电池的研究必要性,展望了未来稳定锌负极界面的策略。
中图分类号:
王心怡, 李维杰, 韩朝, 刘化鹍, 窦世学. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225.
Xinyi WANG, Weijie LI, Chao HAN, Huakun LIU, Shixue DOU. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225.
1 | HUANG Z F, SONG J J, DU Y H, et al. Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation[J]. Carbon Energy, 2019, 1(1): 77-84. |
2 | XIE C L, LI Y H, WANG Q, et al. Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review[J]. Carbon Energy, 2020, 2(4): 540-560. |
3 | CHU S, CUI Y, LIU N. The path towards sustainable energy[J]. Nature Materials, 2016, 16(1): 16-22. |
4 | ZHANG Y M, LIU N. Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries[J]. Chemistry of Materials, 2017, 29(22): 9589-9604. |
5 | LI W J, HAN C, XIA Q B, et al. Remarkable enhancement in sodium-ion kinetics of NaFe2(CN)6 by chemical bonding with graphene[J]. Small Methods, 2018, 2(4): doi: 10.1002/smtd. 201700346. |
6 | LIU L Y, LIANG J J, WANG W L, et al. A P3-type K1/2Mn5/6Mg1/12Ni1/12O2 cathode material for potassium-ion batteries with high structural reversibility secured by the Mg-Ni pinning effect[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28369-28377. |
7 | LI W J, HAN C, WANG W L, et al. Stress distortion restraint to boost the sodium ion storage performance of a novel binary hexacyanoferrate[J]. Advanced Energy Materials, 2020, 10(4): doi: 10.1002/aenm.201903006. |
8 | WU J X, CAO Y L, ZHAO H M, et al. The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries[J]. Carbon Energy, 2019, 1(1): 57-76. |
9 | AO H S, ZHAO Y Y, ZHOU J, et al. Rechargeable aqueous hybrid ion batteries: Developments and prospects[J]. Journal of Materials Chemistry A, 2019, 7(32): 18708-18734. |
10 | WANG S T, YANG Y, DONG Y H, et al. Recent progress in Ti-based nanocomposite anodes for lithium ion batteries[J]. Journal of Advanced Ceramics, 2019, 8(1): 1-18. |
11 | GHOSH M, VIJAYAKUMAR V, KURUNGOT S. Dendrite growth suppression by Zn2+-integrated nafion ionomer membranes: Beyond porous separators toward aqueous Zn/V2O5 batteries with extended cycle life[J]. Energy Technology, 2019, 7(9): doi: 10.1002/ente. 201900442. |
12 | BUTLER K T, I GAUTAM G S, CANEPA P. Designing interfaces in energy materials applications with first-principles calculations[J]. Npj Computational Materials, 2019, 5: 19. |
13 | LIANG Y, DONG H, AURBACH D, et al. Current status and future directions of multivalent metal-ion batteries[J]. Nature Energy, 2020, 5(9): 646-656. |
14 | XIA C, GUO J, LEI Y, et al. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode[J]. Advanced Materials (Deerfield Beach, Fla), 2018, doi: 10.1002/adma.201907798. |
15 | 黄江涛, 周江, 梁叔全. 客体预嵌策略提升水系锌离子电池正极材料电化学性能[J]. 物理化学学报, 2021, 37(3): 33-55. |
HUANG J T, ZHOU J, LIANG S Q. Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes[J]. Acta Physico-Chimica Sinica, 2021, 37(3): 33-55. | |
16 | 衡永丽, 谷振一, 郭晋芝, 等. 水系锌离子电池用钒基正极材料的研究进展[J]. 物理化学学报, 2021, 37(3): 17-32. |
HENG Y L, GU Z Y, GUO J Z, et al. Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries[J]. Acta Physico-Chimica Sinica, 2021, 37(3): 17-32. | |
17 | YANG D, TAN H T, RUI X H, et al. Electrode materials for rechargeable zinc-ion and zinc-air batteries: Current status and future perspectives[J]. Electrochemical Energy Reviews, 2019, 2(3): 395-427. |
18 | YI J, LIU X Y, LIANG P C, et al. Non-noble iron group (Fe, Co, Ni)-based oxide electrocatalysts for aqueous zinc-air batteries: Recent progress, challenges, and perspectives[J]. Organometallics, 2019, 38(6): 1186-1199. |
19 | HU P, YAN M Y, ZHU T, et al. Zn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42717-42722. |
20 | YANG Y Q, TANG Y, LIANG S Q, et al. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability[J]. Nano Energy, 2019, 61: 617-625. |
21 | ZHANG N, CHENG F, LIU J, et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities[J]. Nature Communications, 2017, 8: 405. |
22 | HUANG J, WANG Z, HOU M, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018, 9: 2906. |
23 | LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: Recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587. |
24 | SHIN J, LEE J M, PARK Y, et al. Aqueous zinc ion batteries: Focus on zinc metal anodes[J]. Chemical Science, 2020, 11(8): 2028-2044. |
25 | ZHANG Q, LUAN J Y, TANG Y G, et al. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries[J]. Angewandte Chemie International Edition, 2020, 59(32): 13180-13191. |
26 | HAN C, WANG X Y, PENG J, et al. Recent progress on two-dimensional carbon materials for emerging post-lithium (Na+, K+, Zn2+) hybrid supercapacitors[J]. Polymers, 2021, 13(13): 2137. |
27 | LI W J, HAN C, GU Q F, et al. Electron delocalization and dissolution-restraint in vanadium oxide superlattices to boost electrochemical performance of aqueous zinc-ion batteries[J]. Advanced Energy Materials, 2020, 10(48): doi: 10.1002/aenm. 202001852. |
28 | HAN C, LI W J, LIU H K, et al. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries[J]. Nano Energy, 2020, 74: doi: 10.1016/j.nanoen.2020. 104880. |
29 | LI W J, HAN C, WANG Y, et al. Structural modulation of manganese oxides for zinc-ion batteries[J]. Chinese Journal of Structural Chemistry, 2020, 39(1): 31-35. |
30 | ZHANG L, MIAO L C, XIN W L, et al. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode[J]. Energy Storage Materials, 2022, 44: 408-415. |
31 | ZHENG J X, ZHAO Q, TANG T, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648. |
32 | LI H F, LIU Z X, LIANG G J, et al. Waterproof and tailorable elastic rechargeable yarn zinc ion batteries by a cross-linked polyacrylamide electrolyte[J]. ACS Nano, 2018, 12(4): 3140-3148. |
33 | HU Y S, LU Y X. The mystery of electrolyte concentration: From superhigh to ultralow[J]. ACS Energy Letters, 2020, 5(11): 3633-3636. |
34 | LI B, NIE Z, VIJAYAKUMAR M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015, 6: 6303. |
35 | LIU Z, CUI T, PULLETIKURTHI G, et al. Dendrite-free nanocrystalline zinc electrodeposition from an ionic liquid containing nickel triflate for rechargeable Zn-based batteries[J]. Angewandte Chemie (International Ed in English), 2016, 55(8): 2889-2893. |
36 | ZHANG S S. A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164(1): 351-364. |
37 | YUAN Z Z, DUAN Y Q, LIU T, et al. Toward a low-cost alkaline zinc-iron flow battery with a polybenzimidazole custom membrane for stationary energy storage[J]. iScience, 2018, 3: 40-49. |
38 | JIA H, WANG Z Q, TAWIAH B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020, 70: doi: 10.1016/j.nanoen.2020.104523. |
39 | CHEN D, LU M J, CAI D, et al. Recent advances in energy storage mechanism of aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2021, 54: 712-726. |
40 | PEI A, ZHENG G Y, SHI F F, et al. Nanoscale nucleation and growth of electrodeposited lithium metal[J]. Nano Letters, 2017, 17(2): 1132-1139. |
41 | LIANG P C, YI J, LIU X Y, et al. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries[J]. Advanced Functional Materials, 2020, 30(13): doi: 10.1002/adfm.201908528. |
42 | YUAN L B, HAO J N, KAO C C, et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries[J]. Energy & Environmental Science, 2021, 14(11): 5669-5689. |
43 | SAJJADNEJAD M, GHORBANI M, AFSHAR A. Microstructure-corrosion resistance relationship of direct and pulse current electrodeposited Zn-TiO2 nanocomposite coatings[J]. Ceramics International, 2015, 41(1): 217-224. |
44 | FU J, CANO Z P, PARK M G, et al. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives[J]. Advanced Materials (Deerfield Beach, Fla), 2017, doi: 10.1002/adma. 201604685. |
45 | MA L T, CHEN S M, LI H F, et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(ⅲ) rich-electrode[J]. Energy & Environmental Science, 2018, 11(9): 2521-2530. |
46 | BAYAGUUD A, FU Y P, ZHU C B. Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies[J]. Journal of Energy Chemistry, 2022, 64: 246-262. |
47 | FANG G Z, ZHOU J, PAN A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018, 3(10): 2480-2501. |
48 | CAI Z, OU Y T, WANG J D, et al. Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries[J]. Energy Storage Materials, 2020, 27: 205-211. |
49 | KIM Y J, RYU K S. The surface-modified effects of Zn anode with CuO in Zn-air batteries[J]. Applied Surface Science, 2019, 480: 912-922. |
50 | LU W J, XIE C X, ZHANG H M, et al. Inhibition of zinc dendrite growth in zinc-based batteries[J]. ChemSusChem, 2018, 11(23): 3996-4006. |
51 | MCKUBRE M C H, MACDONALD D D. The dissolution and passivation of zinc in concentrated aqueous hydroxide[J]. Journal of the Electrochemical Society, 1981, 128(3): 524-530. |
52 | YANG Q, LI Q, LIU Z X, et al. Dendrites in Zn-based batteries[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(48): doi: 10.1002/adma.202001854. |
53 | KHOR A, LEUNG P, MOHAMED M R, et al. Review of zinc-based hybrid flow batteries: From fundamentals to applications[J]. Materials Today Energy, 2018, 8: 80-108. |
54 | BANIK S J, AKOLKAR R. Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive[J]. Journal of the Electrochemical Society, 2013, 160(11): D519-D523. |
55 | NAKATA A, ARAI H, YAMANE T, et al. Preserving zinc electrode morphology in aqueous alkaline electrolytes mixed with highly concentrated organic solvent[J]. Journal of the Electrochemical Society, 2015, 163(2): A50-A56. |
56 | PARKER J F, PALA I R, CHERVIN C N, et al. Minimizing shape change at Zn sponge anodes in rechargeable Ni-Zn cells: Impact of electrolyte formulation[J]. Journal of the Electrochemical Society, 2015, 163(3): A351-A355. |
57 | WU T H, ZHANG Y, ALTHOUSE Z D, et al. Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries[J].Materials Today Nano, 2019, 6:doi:10.1016/j.mtnano.2019.100032. |
58 | ZHANG Y M, HOWE J D, BEN-YOSEPH S, et al. Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries[J]. ACS Energy Letters, 2021, 6(2): 404-412. |
59 | SHI X D, XU G F, LIANG S Q, et al. Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(21): 17737-17746. |
60 | KANG Z, WU C L, DONG L B, et al. 3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 3364-3371. |
61 | KUNDU D P, HOSSEINI V S, WAN L W, et al. Aqueous vs. nonaqueous Zn-ion batteries: Consequences of the desolvation penalty at the interface[J]. Energy & Environmental Science, 2018, 11(4): 881-892. |
62 | XIE X S, LIANG S Q, GAO J W, et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes[J]. Energy & Environmental Science, 2020, 13(2): 503-510. |
63 | JIAN Q P, GUO Z X, ZHANG L C, et al. A hierarchical porous tin host for dendrite-free, highly reversible zinc anodes[J]. Chemical Engineering Journal, 2021, 425: doi: 10.1016/j.cej.2021.130643. |
64 | SHANGGUAN E B, LI L Q, WU C K, et al. Microemulsion synthesis of 3D flower-like calcium zincate anode materials with superior high-rate and cycling property for advanced zinc-based batteries[J]. Journal of Alloys and Compounds, 2021, 853: doi: 10.1016/j.jallcom.2020.156965. |
65 | LI T C, FANG D L, ZHANG J T, et al. Recent progress in aqueous zinc-ion batteries: A deep insight into zinc metal anodes[J]. Journal of Materials Chemistry A, 2021, 9(10): 6013-6028. |
66 | CAO P H, ZHOU X Y, WEI A R, et al. Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries[J]. Advanced Functional Materials, 2021, 31(20): doi: 10.1002/adfm.202100398. |
67 | CHEN P, YUAN X H, XIA Y B, et al. An artificial polyacrylonitrile coating layer confining zinc dendrite growth for highly reversible aqueous zinc-based batteries[J]. Advanced Science, 2021, 8(11): doi: 10.1002/advs.202100309. |
68 | HAN D L, WU S C, ZHANG S W, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small (Weinheim an Der Bergstrasse, Germany), 2020, 16(29): doi: 10.1002/smll.202001736. |
69 | YANG H J, CHANG Z, QIAO Y, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angewandte Chemie (International Ed in English), 2020, 59(24): 9377-9381. |
70 | LI B, XUE J, LV X, et al. A facile coating strategy for high stability aqueous zinc ion batteries: Porous rutile nano-TiO2 coating on zinc anode[J]. Surface and Coatings Technology, 2021, 421: doi: 10.1016/j.surfcoat.2021.127367. |
71 | LIU C, LUO Z, DENG W T, et al. Liquid alloy interlayer for aqueous zinc-ion battery[J]. ACS Energy Letters, 2021, 6(2): 675-683. |
72 | ZHAO Z M, ZHAO J W, HU Z L, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949. |
73 | GUO W, ZHANG Y, TONG X, et al. Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries[J]. Materials Today Energy, 2021, 20: doi: 10.1016/j.mtener.2021.100675. |
74 | ZHANG F, WANG C G, PAN J, et al. Polypyrrole-controlled plating/stripping for advanced zinc metal anodes[J]. Materials Today Energy, 2020, 17: doi: 10.1016/j.mtener.2020.100443. |
75 | DENG C B, XIE X S, HAN J W, et al. A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode[J]. Advanced Functional Materials, 2020, 30(21): doi: 10.1002/adfm. 202000599. |
76 | ZHOU M, GUO S, FANG G Z, et al. Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte[J]. Journal of Energy Chemistry, 2021, 55: 549-556. |
77 | HAN J, EUCHNER H, KUENZEL M, et al. A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries[J]. ACS Energy Letters, 2021, 6(9): 3063-3071. |
78 | LU Q Q, LIU C C, DU Y H, et al. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16869-16875. |
79 | LI T C, LIM Y V, XIE X S, et al. ZnSe modified zinc metal anodes: Toward enhanced zincophilicity and ionic diffusion[J]. Small, 2021, 17(35): doi: 10.1002/smll.202101728. |
80 | WANG F, BORODIN O, GAO T, et al. Highly reversible zinc metal anode for aqueous batteries[J]. Nature Materials, 2018, 17(6): 543-549. |
81 | ZHOU W J, CHEN M F, WANG A R, et al. Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material[J]. Journal of Energy Chemistry, 2021, 52: 377-384. |
82 | SUN T J, YUAN X M, WANG K, et al. An ultralow-temperature aqueous zinc-ion battery[J]. Journal of Materials Chemistry A, 2021, 9(11): 7042-7047. |
83 | ZHANG N, CHENG F Y, LIU Y C, et al. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery[J]. Journal of the American Chemical Society, 2016, 138(39): 12894-12901. |
84 | SUO L M, BORODIN O, GAO T, et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943. |
85 | ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. |
86 | DING F, XU W, GRAFF G L, et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism[J]. Journal of the American Chemical Society, 2013, 135(11): 4450-4456. |
87 | PARK K, YU B C, GOODENOUGH J B. Li3N as a cathode additive for high-energy-density lithium-ion batteries[J]. Advanced Energy Materials, 2016, 6(10): doi: 10.1002/aenm.201502534. |
88 | KAN J Q, XUE H G, MU S L. Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery[J]. Journal of Power Sources, 1998, 74(1): 113-116. |
89 | GENG M, NORTHWOOD D O. Development of advanced rechargeable Ni/MH and Ni/Zn batteries[J]. International Journal of Hydrogen Energy, 2003, 28(6): 633-636. |
90 | XU M, IVEY D G, QU W, et al. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide[J]. Journal of Power Sources, 2015, 274: 1249-1253. |
91 | WILCOX G D, MITCHELL P J. Electrolyte additives for zinc-anoded secondary cells I. Brighteners, levellers and complexants[J]. Journal of Power Sources, 1989, 28(4): 345-359. |
92 | GUO X X, ZHANG Z Y, LI J W, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives[J]. ACS Energy Letters, 2021, 6(2): 395-403. |
93 | YAN C, LI H R, CHEN X, et al. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes[J]. Journal of the American Chemical Society, 2019, 141(23): 9422-9429. |
94 | XU R, SHEN X, MA X X, et al. Identifying the critical anion-cation coordination to regulate the electric double layer for an efficient lithium-metal anode interface[J]. Angewandte Chemie (International Ed in English), 2021, 60(8): 4215-4220. |
95 | HUANG C, ZHAO X, LIU S, et al. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(38): doi: 10.1002/adma.202100445. |
96 | BAYAGUUD A, LUO X, FU Y P, et al. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries[J]. ACS Energy Letters, 2020, 5(9): 3012-3020. |
97 | SHI J Q, XIA K X, LIU L J, et al. Ultrahigh coulombic efficiency and long-life aqueous Zn anodes enabled by electrolyte additive of acetonitrile[J]. Electrochimica Acta, 2020, 358: doi: 10.1016/j.electacta.2020.136937. |
98 | WANG Z F, LI H F, TANG Z J, et al. Hydrogel electrolytes for flexible aqueous energy storage devices[J]. Advanced Functional Materials, 2018, 28(48): doi: 10.1002/adfm.201804560. |
99 | WANG X W, WANG F X, WANG L Y, et al. An aqueous rechargeable Zn||Co3O4 Battery with high energy density and good cycling behavior[J]. Advanced Materials, 2016, 28(24): 4904-4911. |
100 | TANG Y, LIU C X, ZHU H R, et al. Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode[J]. Energy Storage Materials, 2020, 27: 109-116. |
101 | MALAGURSKI I, LEVIC S, PANTIC M, et al. Synthesis and antimicrobial properties of Zn-mineralized alginate nanocomposites[J]. Carbohydrate Polymers, 2017, 165: 313-321. |
102 | LIN X D, ZHOU G D, LIU J P, et al. Bifunctional hydrated gel electrolyte for long-cycling Zn-ion battery with NASICON-type cathode[J]. Advanced Functional Materials, 2021, 31(42): doi: 10.1002/adfm.202105717. |
103 | CONG J L, SHEN X, WEN Z P, et al. Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte[J]. Energy Storage Materials, 2021, 35: 586-594. |
104 | WANG R, YAO M J, HUANG S, et al. Sustainable dough-based gel electrolytes for aqueous energy storage devices[J]. Advanced Functional Materials, 2021, 31(14): doi: 10.1002/adfm.202009209. |
105 | DAY L, AUGUSTIN M A, BATEY I L, et al. Wheat-gluten uses and industry needs[J]. Trends in Food Science & Technology, 2006, 17(2): 82-90. |
106 | LI J, YU P F, ZHANG S T, et al. Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery[J]. Journal of Colloid and Interface Science, 2021, 600: 586-593. |
107 | HUANG S, ZHU J C, TIAN J L, et al. Recent progress in the electrolytes of aqueous zinc-ion batteries[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2019, 25(64): 14480-14494. |
[1] | 乔东格, 刘训良, 温治, 豆瑞峰, 周文宁. 升温和脉冲充电对锂枝晶生长抑制作用的数值分析[J]. 储能科学与技术, 2022, 11(3): 1008-1018. |
[2] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[3] | 李亚捷, 张更, 沙立婷, 赵伟, 陈斌, 王达, 喻嘉, 施思齐. 可充电电池中枝晶问题的相场模拟[J]. 储能科学与技术, 2022, 11(3): 929-938. |
[4] | 高金辉, 陈英龙, 孟繁慧, 丁美超, 王莉, 许刚, 何向明. 锂离子电池原位光学显微观测[J]. 储能科学与技术, 2022, 11(1): 53-59. |
[5] | 姚祯, 王锐, 阳雪, 张琦, 刘庆华, 王保国, 缪平. 锌铁液流电池研究现状及展望[J]. 储能科学与技术, 2022, 11(1): 78-88. |
[6] | 许卓, 郑莉莉, 陈兵, 张涛, 常修亮, 韦守李, 戴作强. 固态电池复合电解质研究综述[J]. 储能科学与技术, 2021, 10(6): 2117-2126. |
[7] | 刘洋洋, 王旭阳, 徐谢宇, 王永静, 熊仕昭, 宋忠孝. 锂金属负极用集流体改性研究及进展[J]. 储能科学与技术, 2021, 10(4): 1261-1272. |
[8] | 衡永丽, 谷振一, 郭晋芝, 吴兴隆. Na3V2(PO4)3@C用作水系锌离子电池正极材料的研究[J]. 储能科学与技术, 2021, 10(3): 938-944. |
[9] | 方聪聪, 刘雯, 王勇, 郭瑞, 裴海娟, 于升学, 解晶莹. 金属锂电极的原位物理表征[J]. 储能科学与技术, 2018, 7(S1): 54-62. |
[10] | 孟令然1,2,郭立江1,李晓禹1,王 会1,陈胜利2,周 园3,李建强1. 水合盐相变储能材料的研究进展[J]. 储能科学与技术, 2017, 6(4): 623-632. |
[11] | 沈馨,张睿,程新兵,管超,黄佳琦,张强. 锂枝晶的原位观测及生长机制研究进展[J]. 储能科学与技术, 2017, 6(3): 418-432. |
[12] | 石 凯,安德成,贺艳兵,李宝华,康飞宇. 基于聚合物电解质固态锂硫电池的研究进展和发展趋势[J]. 储能科学与技术, 2017, 6(3): 479-492. |
[13] | 王绥军, 傅凯, 官亦标, 刘曙光, 徐彬, 范茂松. 软包磷酸铁锂电池低温热安全性能研究[J]. 储能科学与技术, 2016, 5(2): 204-209. |
[14] | 朱建宇, 冯捷敏, 郭战胜. 锂离子电池电极中锂枝晶的实时原位观测[J]. 储能科学与技术, 2015, 4(1): 66-71. |
[15] | 李元元, 程晓敏. 低熔点合金传热储热材料的研究与应用[J]. 储能科学与技术, 2013, 2(3): 189-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||