1 |
容晓晖, 陆雅翔, 戚兴国, 等. 钠离子电池: 从基础研究到工程化探索[J]. 储能科学与技术, 2020, 9(2): 515-522.
|
|
RONG X H, LU Y X, QI X G, et al. Na-ion batteries: From fundamental research to engineering exploration[J]. Energy Storage Science and Technology, 2020, 9(2): 515-522.
|
2 |
XIANG X D, ZHANG K, CHEN J. Recent advances and prospects of cathode materials for sodium-ion batteries[J]. Advanced Materials, 2015, 27(36): 5343-5364.
|
3 |
DAHBI M, YABUUCHI N, KUBOTA K, et al. Negative electrodes for Na-ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2014, 16(29): 15007-15028.
|
4 |
ZHU Z Q, CHENG F Y, HU Z, et al. Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries[J]. Journal of Power Sources, 2015, 293: 626-634.
|
5 |
XIAO B W, ROJO T, LI X L. Hard carbon as sodium-ion battery anodes: Progress and challenges[J]. ChemSusChem, 2019, 12(1): 133-144.
|
6 |
QIN D C, LIU Z Y, ZHAO Y Z, et al. A sustainable route from corn stalks to N,P-dual doping carbon sheets toward high performance sodium-ion batteries anode[J]. Carbon, 2018, 130: 664-671.
|
7 |
HWANG J Y, DU H L, YUN B N, et al. Carbon-free TiO2 microspheres as anode materials for sodium ion batteries[J]. ACS Energy Letters, 2019, 4(2): 494-501.
|
8 |
HU Z, WANG L X, ZHANG K, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(47): 12794-12798.
|
9 |
XIA Q B, LI W J, MIAO Z C, et al. Phosphorus and phosphide nanomaterials for sodium-ion batteries[J]. Nano Research, 2017, 10(12): 4055-4081.
|
10 |
NI J F, LI L, LU J. Phosphorus: An anode of choice for sodium-ion batteries[J]. ACS Energy Letters, 2018, 3(5): 1137-1144.
|
11 |
LIU Q N, HU Z, ZOU C, et al. Structural engineering of electrode materials to boost high-performance sodium-ion batteries[J]. Cell Reports Physical Science, 2021, 2(9): doi: 10.1016/j.xcrp.2021.100551.
|
12 |
ZHU Y J, WEN Y, FAN X L, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3): 3254-3264.
|
13 |
YU Z X, SONG J X, WANG D W, et al. Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures[J]. Nano Energy, 2017, 40: 550-558.
|
14 |
SUN J, LEE H W, PASTA M, et al. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries[J]. Energy Storage Materials, 2016, 4: 130-136.
|
15 |
LIU X, XIAO B W, DAALI A, et al. Stress- and interface-compatible red phosphorus anode for high-energy and durable sodium-ion batteries[J]. ACS Energy Letters, 2021, 6(2): 547-556.
|
16 |
LIU Y H, ZHANG A Y, SHEN C F, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries[J]. ACS Nano, 2017, 11(6): 5530-5537.
|
17 |
MA X X, CHEN L, REN X H, et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1574-1581.
|
18 |
YAO S S, CUI J, HUANG J Q, et al. Rational assembly of hollow microporous carbon spheres as P hosts for long-life sodium-ion batteries[J]. Advanced Energy Materials, 2018, 8(7): doi: 10.1002/aenm.201702267.
|
19 |
LI W H, HU S H, LUO X Y, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery[J]. Advanced Materials,2017, 29(16): doi: 10.1002/adma.201605820.
|
20 |
FANG K, LIU D, XIANG X Y, et al. Air-stable red phosphorus anode for potassium/sodium-ion batteries enabled through dual-protection design[J]. Nano Energy, 2020, 69: doi: 10.1016/j.nanoen.2020.104451.
|
21 |
SUN J, LEE H W, PASTA M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10(11): 980-985.
|
22 |
QIU M, SUN Z T, SANG D K, et al. Current progress in black phosphorus materials and their applications in electrochemical energy storage[J]. Nanoscale, 2017, 9(36): 13384-13403.
|
23 |
HEMBRAM K P S S, JUNG H, YEO B C, et al. Unraveling the atomistic sodiation mechanism of black phosphorus for sodium ion batteries by first-principles calculations[J]. The Journal of Physical Chemistry C, 2015, 119(27): 15041-15046.
|
24 |
DAHBI M, YABUUCHI N, FUKUNISHI M, et al. Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: Investigation of the electrode/electrolyte interface[J]. Chemistry of Materials, 2016, 28(6): 1625-1635.
|
25 |
XU G L, CHEN Z H, ZHONG G M, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries[J]. Nano Letters, 2016, 16(6): 3955-3965.
|
26 |
LIU Y H, LIU Q Z, ZHANG A Y, et al. Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes[J]. ACS Nano, 2018, 12(8): 8323-8329.
|
27 |
CHOWDHURY C, KARMAKAR S, DATTA A. Capping black phosphorene by h-BN enhances performances in anodes for Li and Na ion batteries[J]. ACS Energy Letters, 2016, 1(1): 253-259.
|
28 |
HUANG Z D, HOU H S, ZHANG Y, et al. Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode[J]. Advanced Materials, 2017, 29(34): doi: 10.1002/adma.201702372.
|
29 |
LI Q F, YANG D, CHEN H L, et al. Advances in metal phosphides for sodium-ion batteries[J]. SusMat, 2021, 1(3): 359-392.
|
30 |
ZHANG K, PARK M, ZHANG J, et al. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries[J]. Nano Research, 2017, 10(12): 4337-4350.
|
31 |
LIU S, FENG J K, BIAN X F, et al. A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries[J]. Energy & Environmental Science, 2017, 10(5): 1222-1233.
|
32 |
FU C M, YANG H, FENG G F, et al. In-situ reducing synthesis of MoP@nitrogen-doped carbon nanofibers as an anode material for lithium/sodium-ion batteries[J]. Electrochimica Acta, 2020, 358: doi: 10.1016/j.electacta.2020.136921.
|
33 |
WANG Y, LIM Y V, HUANG S Z, et al. Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO[J]. Nanoscale, 2020, 12(7): 4341-4351.
|
34 |
HU Z, LIU Q N, LAI W H, et al. Manipulating molecular structure and morphology to invoke high-performance sodium storage of copper phosphide[J]. Advanced Energy Materials, 2020, 10(19): doi: 10.1002/aenm.201903542.
|
35 |
YANG Y, FU W, LEE D C, et al. Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries[J]. Materials Today Energy, 2020, 16: doi: 10.1016/j.mtener.2020.100410.
|
36 |
SHI S S, SUN C L, YIN X P, et al. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications[J]. Advanced Functional Materials, 2020, 30(10): doi: 10.1002/adfm.201909283.
|
37 |
GE X L, LI Z Q, YIN L W. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano Energy, 2017, 32: 117-124.
|
38 |
LIU Q N, HU Z, LIANG Y R, et al. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage[J]. Angewandte Chemie International Edition, 2020, 59(13): 5159-5164.
|
39 |
HAO S Y, LI H J, ZHAO Z X, et al. Pseudocapacitance-enhanced anode of CoP@C particles embedded in graphene aerogel toward ultralong cycling stability sodium-ion batteries[J]. ChemElectroChem, 2019, 6(22): 5712-5720.
|
40 |
LIU J, KOPOLD P, WU C, et al. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries[J]. Energy & Environmental Science, 2015, 8(12): 3531-3538.
|
41 |
LI W J, CHOU S L, WANG J Z, et al. Sn4+ xP3@amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability[J]. Advanced Materials, 2014, 26(24): 4037-4042.
|
42 |
WANG W H, ZHANG J L, YU D Y W, et al. Improving the cycling stability of Sn4P3 anode for sodium-ion battery[J]. Journal of Power Sources, 2017, 364: 420-425.
|
43 |
XU Y L, PENG B, MULDER F M. A high-rate and ultrastable sodium ion anode based on a novel Sn4P3-P@graphene nanocomposite[J]. Advanced Energy Materials, 2018, 8(3): doi: 10.1002/aenm.201701847.
|
44 |
LU Y Y, ZHOU P F, LEI K X, et al. Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(7): doi: 10.1002/aenm.201601973.
|
45 |
LIU W L, ZHI H Q, YU X B. Recent progress in phosphorus based anode materials for lithium/sodium ion batteries[J]. Energy Storage Materials, 2019, 16: 290-322.
|
46 |
ZHANG W, LIU T F, WANG Y, et al. Strategies to improve the performance of phosphide anodes in sodium-ion batteries[J]. Nano Energy, 2021, 90: doi: 10.1016/j.nanoen.2021.106475.
|
47 |
WANG T Z, CAO X J, JIAO L F. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production[J]. eScience, 2021, 1(1): 69-74.
|