储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1201-1210.doi: 10.19799/j.cnki.2095-4239.2021.0613

• 国际优秀储能青年科学家专刊 • 上一篇    下一篇

钠离子电池磷基负极材料研究进展

刘倩楠1,2(), 胡伟平1,3, 轷喆1,4()   

  1. 1.伍伦贡大学超导及电子材料研究所,澳大利亚 新南威尔士 2500
    2.温州大学碳中和技术创新研究院,化学与材料工程学院,浙江 温州 325035
    3.深圳大学高等研究院,广东 深圳 518060
    4.深圳大学材料学院,广东 深圳 518071
  • 收稿日期:2021-11-22 修回日期:2021-12-01 出版日期:2022-04-05 发布日期:2022-04-11
  • 通讯作者: 轷喆 E-mail:lqn9008@126.com;zh865@icloud.com
  • 作者简介:刘倩楠(1990—),女,博士,副研究员,研究方向为钠离子电池电极材料,E-mail:lqn9008@126.com

Research progress of phosphorus-based anode materials for sodium-ion batteries

Qiannan LIU1,2(), Weiping HU1,3, Zhe HU1,4()   

  1. 1.Institute for Superconducting & Electronic Materials, University of Wollongong, New South Wales 2500, Australia
    2.Technalogy Innovation Institute for Carbon Neutraliazation, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China
    3.Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong, China
    4.College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, Guangdong, China
  • Received:2021-11-22 Revised:2021-12-01 Online:2022-04-05 Published:2022-04-11
  • Contact: Zhe HU E-mail:lqn9008@126.com;zh865@icloud.com

摘要:

钠离子电池作为一种新型的能源储存技术得到越来越多的关注,尤其是在大规模储能领域具有明显的优势,有望部分取代锂离子电池。钠离子电池磷基负极材料具有高的理论容量和合适的储钠电位,因而受到广泛关注。但部分磷基材料导电性差和循环过程中体积变化大,使得其在产业化应用方面仍面临着严峻的挑战。本文针对磷基钠离子电池负极材料的研究进展,对红磷、黑磷、磷烯、金属磷化物的储钠机理、研究现状、改进策略进行了总结。目前,钠离子电池磷基负极材料的研究主要集中在导电材料复合和限域结构设计。另外,保护性/导电性涂层包覆、元素取代/掺杂改性、新型电解液的使用以及测试电化学窗口的调控也可改善磷基钠离子电池负极材料的电化学性能。富磷相的制备、储钠机理的确定、先进的检测技术和计算模拟的运用、电池配套组分和全电池的研究是未来金属磷化物钠离子电池负极材料的研究方向。

关键词: 钠离子电池, 负极材料, 磷基材料, 金属磷化物

Abstract:

Sodium-ion batteries as a new type of clean and renewable energy technology have attracted more and more attention, and have a distinct advantage especially in the area of large-scale energy storage application. It is expected to partially replace lithium-ion batteries. Phosphorus-based anode materials for sodium-ion batteries have drawn wide attention due to the high theoretical capacity and suitable sodium storage voltage. The poor electrical conductivity and big volume change during cycling processes, however, make their commercialization challenging. To elucidate the research progress of phosphorus-based anode materials for sodium-ion batteries, the sodium storage mechanism, current research status, and modification strategies of red phosphorus, black phosphorus, phosphorene, and metal phosphides as anode materials for sodium-ion batteries have been summarized. Currently, the researches of phosphorus-based sodium-ion battery anodes focus on the combination with conductive carbonaceous materials and the design of materials with confined structure. In addition, protective/conductive coating, elemental substitution/doping, usage of new types of electrolytes, and tuning of electrochemical window can effectively improve the electrochemical performance of phosphorus-based sodium-ion battery anodes. The future research tendency can focus on the preparation of phosphorous-rich materials, the determination of sodium storage mechanism, the usage of advance characterization and theoretical methods, and the study of matched components and full cell.

Key words: sodium-ion batteries, anode materials, phosphorus-based materials, metal phosphides

中图分类号: