储能科学与技术 ›› 2022, Vol. 11 ›› Issue (4): 1184-1200.doi: 10.19799/j.cnki.2095-4239.2021.0719
孙畅1(), 邓泽荣1, 江宁波2, 张露露1(), FANG Hui3, 杨学林1()
收稿日期:
2021-12-31
修回日期:
2022-01-23
出版日期:
2022-04-05
发布日期:
2022-04-11
通讯作者:
张露露,杨学林
E-mail:Sunchang0127@ outlook.com;zlljoy@126.com;xlyang@ctgu.edu.cn
作者简介:
孙畅(1995—),女,博士研究生,主要研究方向为钠离子电池聚阴离子型钒基磷酸盐系正极材料,E-mail:基金资助:
Chang SUN1(), Zerong DENG1, Ningbo JIANG2, Lulu ZHANG1(), Hui FANG3, Xuelin YANG1()
Received:
2021-12-31
Revised:
2022-01-23
Online:
2022-04-05
Published:
2022-04-11
Contact:
Lulu ZHANG,Xuelin YANG
E-mail:Sunchang0127@ outlook.com;zlljoy@126.com;xlyang@ctgu.edu.cn
摘要:
钠离子电池因其原材料储量丰富、成本低、安全环保等优势在大规模储能、低速电动车领域具有广阔的应用前景。氟磷酸钒钠[Na3V2(PO4)2F3,NVPF]正极材料具有稳定的三维框架结构、高的理论比容量(128 mA·h/g)和高的工作电压(约3.8 V)等优点,已成为近年来钠离子电池正极材料研究的热点。然而,NVPF较低的电子电导率和较慢的离子扩散速率导致其实际比容量偏低且倍率性能不理想,阻碍了其进一步发展。为此,研究者们通过优化NVPF的合成工艺,并采用包覆、离子掺杂和结构设计等方法对其进行改性,使其电化学性能得到了显著提升,极大增强了NVPF在钠离子电池中的应用潜力。本文通过对近年相关文献的回顾,介绍了NVPF的晶胞特征,并梳理了NVPF的四种脱嵌钠机制(固溶反应机制、分步钠脱嵌机制、三步钠脱嵌机制和两步钠脱嵌机制);简要综述了NVPF常用的三种合成方法(高温固相法、水热法和溶胶-凝胶法),并归纳了各方法的优缺点;详细介绍了利用包覆、离子掺杂和结构设计等方法改性NVPF的研究进展。最后,从实际应用角度出发,对NVPF的合成、改性及其全电池的发展进行了展望,以期推动NVPF正极材料在钠离子电池中的应用化进程。
中图分类号:
孙畅, 邓泽荣, 江宁波, 张露露, FANG Hui, 杨学林. 钠离子电池正极材料氟磷酸钒钠研究进展[J]. 储能科学与技术, 2022, 11(4): 1184-1200.
Chang SUN, Zerong DENG, Ningbo JIANG, Lulu ZHANG, Hui FANG, Xuelin YANG. Recent research progress of sodium vanadium fluorophosphate as cathode material for sodium-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(4): 1184-1200.
1 | WANG M X, WANG K, HUANG X B, et al. Improved sodium storage properties of Zr-doped Na3V2(PO4)2F3/C as cathode material for sodium ion batteries[J]. Ceramics International, 2020, 46(18): 28490-28498. |
2 | ZHU W K, LIANG K, REN Y R. Modification of the morphology of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries by polyvinylpyrrolidone[J]. Ceramics International, 2021, 47(12): 17192-17201. |
3 | 曹余良. 钠离子电池机遇与挑战[J]. 储能科学与技术, 2020, 9(3): 757-761. |
CAO Y L. The opportunities and challenges of sodium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 757-761. | |
4 | 王跃生, 容晓晖, 徐淑银, 等. 室温钠离子储能电池电极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 268-284. |
WANG Y S, RONG X H, XU S Y, et al. Recent progress of electrode materials for room-temperature sodium-ion stationary batteries[J]. Energy Storage Science and Technology, 2016, 5(3): 268-284. | |
5 | 黄洋洋, 方淳, 黄云辉. 高性能低成本钠离子电池电极材料研究进展[J]. 硅酸盐学报, 2021, 49(2): 256-271. |
HUANG Y Y, FANG C, HUANG Y H. Recent development on electrode materials with high performance and low cost for sodium-ion batteries[J]. Journal of the Chinese Ceramic Society, 2021, 49(2): 256-271. | |
6 | WANG Y, WANG X Y, LI X L, et al. The novel P3-type layered Na0.65Mn0.75Ni0.25O2 oxides doped by non-metallic elements for high performance sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 360: 139-147. |
7 | ZUO W, QIU J, LIU X, et al. The stability of P2-layered sodium transition metal oxides in ambient atmospheres[J]. Nature Communications, 2020, 11: 3544. |
8 | ZHU Y F, XIAO Y, DOU S X, et al. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries[J]. eScience, 2021, 1(1): 13-27. |
9 | GAO L, CHEN G H, ZHANG L L, et al. Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors[J]. Electrochimica Acta, 2021, 379: doi: 10.1016/j.electacta. 2021.138185. |
10 | 朱晓辉, 庄宇航, 赵旸, 等. 钠离子电池层状正极材料研究进展[J]. 储能科学与技术, 2020, 9(5): 1340-1349. |
ZHU X H, ZHUANG Y H, ZHAO Y, et al. Development of layered cathode materials for sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1340-1349. | |
11 | ZHANG L L, WEI C, FU X Y, et al. Ternary Ni-based prussian blue analogue with superior sodium storage performance induced by synergistic effect of Co and Fe[J]. Carbon Energy, 2021, 3(5): 827-839. |
12 | 魏程, 江宁波, 张露露, 等. 普鲁士蓝类化合物作为钠离子电池正极材料的研究进展[J]. 硅酸盐学报, 2021, 49(6): 1078-1090. |
WEI C, JIANG N B, ZHANG L L, et al. Research progress on synthesis and modification of prussian blue analogue as cathode material for sodium ion battery[J]. Journal of the Chinese Ceramic Society, 2021, 49(6): 1078-1090. | |
13 | HUANG T B, NIU Y B, YANG Q J, et al. Self-template synthesis of prussian blue analogue hollow polyhedrons as superior sodium storage cathodes[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37187-37193. |
14 | XU Y, OU M Y, LIU Y, et al. Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries[J]. Nano Energy, 2020, 67: doi:10.1016/j.nanoen.2019.104250. |
15 | TANG Y, LI W, FENG P Y, et al. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(10): doi: 10.1002/adfm.201908754. |
16 | WEI C, FU X Y, ZHANG L L, et al. Structural regulated nickel hexacyanoferrate with superior sodium storage performance by K-doping[J]. Chemical Engineering Journal, 2021, 421: doi:10.1016/j.cej.2020.127760. |
17 | 杨旸, 严小敏, 杨德志, 等. 普鲁士蓝类钠离子电池正极材料研究进展[J]. 储能科学与技术, 2016, 5(3): 303-308. |
YANG Y, YAN X M, YANG D Z, et al. Progress in prussian blue in sodium ion cathode material[J]. Energy Storage Science and Technology, 2016, 5(3): 303-308. | |
18 | 易红明, 吕志强, 张华民, 等. 钠离子电池钒基聚阴离子型正极材料的发展现状与应用挑战[J]. 储能科学与技术, 2020, 9(5): 1350-1369. |
YI H M, LYU Z Q, ZHANG H M, et al. Recent progress and application challenges in V-based polyanionic compounds for cathodes of sodium-ion batteries[J]. Energy Storage Science and Technology, 2020, 9(5): 1350-1369. | |
19 | LI J, QI Y R, XIAO F Y, et al. A facilely-synthesized polyanionic cathode with impressive long-term cycling stability for sodium-ion batteries[J]. Chemical Communications, 2021, 57(75): 9566-9569. |
20 | ZHANG L L, LIU J, WEI C, et al. N/P-dual-doped carbon-coated Na3V2(PO4)2O2F microspheres as a high-performance cathode material for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3670-3680. |
21 | 潘雯丽, 关文浩, 姜银珠. 聚阴离子型钠离子电池正极材料的研究进展[J]. 物理化学学报, 2020, 36(5): 69-80. |
PAN W L, GUAN W H, JIANG Y Z. Research advances in polyanion-type cathodes for sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2020, 36(5): 69-80. | |
22 | JIAN Z L, HU Y S, JI X L, et al. NASICON-structured materials for energy storage[J]. Advanced Materials, 2017, 29(20): doi:10.1002/adma.201601925. |
23 | ZHANG L L, ZHOU Y X, LI T, et al. Multi-heteroatom doped carbon coated Na3 V2 (PO 4)3 derived from ionic liquids[J]. Dalton Transactions (Cambridge, England: 2003), 2018, 47(12): 4259-4266. |
24 | SONG W X, JI X B, CHEN J, et al. Mechanistic investigation of ion migration in Na3V2(PO4)2F3 hybrid-ion batteries[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(1): 159-165. |
25 | YAO G, ZHANG X X, YAN Y L, et al. Facile synthesis of hierarchical Na2Fe(SO4)2@rGO/C as high-voltage cathode for energy density-enhanced sodium-ion batteries[J]. Journal of Energy Chemistry, 2020, 50: 387-394. |
26 | OH S M, MYUNG S T, HASSOUN J, et al. Reversible NaFePO4 electrode for sodium secondary batteries[J]. Electrochemistry Communications, 2012, 22: 149-152. |
27 | KO W, YOO J K, PARK H, et al. Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries[J]. Journal of Power Sources, 2019, 432: 1-7. |
28 | CHENG C, ZANG X X, HOU W X, et al. Construction of three-dimensional electronic interconnected Na3V2(PO4)3/C as cathode for sodium ion batteries[J]. Journal of Alloys and Compounds, 2022, 899: doi: 10.1016/j.jallcom.2021.163363. |
29 | PARK S, SONG J J, KIM S, et al. Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries[J]. Nano Research, 2019, 12(4): 911-917. |
30 | MA C Y, XU T T, YAN C C, et al. Mechanism investigation of high performance Na3V2(PO4)2O2F/reduced graphene oxide cathode for sodium-ion batteries[J]. Journal of Power Sources, 2021, 482: doi: 10.1016/j.jpowsour.2020.228906. |
31 | ZHAN W X, FAN C L, ZHANG W H, et al. Ultra-long cycle life and high rate performance subglobose Na3V2(PO4)2F3@C cathode and its regulation[J]. International Journal of Energy Research, 2020, 44(8): 6608-6622. |
32 | LE MEINS J M, CROSNIER-LOPEZ M P, HEMON-RIBAUD A, et al. Phase transitions in the Na3M2(PO4)2F3 family (M=Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies[J]. Journal of Solid State Chemistry, 1999, 148(2): 260-277. |
33 | SONG W X, JI X B, WU Z P, et al. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries[J]. Journal of Power Sources, 2014, 256: 258-263. |
34 | LIU Z G, HU Y Y, DUNSTAN M T, et al. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3[J]. Chemistry of Materials, 2014, 26(8): 2513-2521. |
35 | BIANCHINI M, FAUTH F, BRISSET N, et al. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction[J]. Chemistry of Materials, 2015, 27(8): 3009-3020. |
36 | LI Y S, LIANG X H, CHEN G L, et al. In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage[J]. Chemical Engineering Journal, 2020, 387: doi:10.1016/j.cej.2019.123952. |
37 | ZHANG Y, WANG T, TANG Y K, et al. In situ redox reaction induced firmly anchoring of Na3V2(PO4)2F3 on reduced graphene oxide & carbon nanosheets as cathodes for high stable sodium-ion batteries[J]. Journal of Power Sources, 2021, 516: doi: 10.1016/j.jpowsour.2021.230515. |
38 | ZHU L, ZHANG Q, SUN D, et al. Engineering the crystal orientation of Na3V2(PO4)2F3@rGO microcuboids for advanced sodium-ion batteries[J]. Materials Chemistry Frontiers, 2020, 4(10): 2932-2942. |
39 | YANG Z, LI G L, SUN J Y, et al. High performance cathode material based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for sodium-ion batteries[J]. Energy Storage Materials, 2020, 25: 724-730. |
40 | DENG L, YU F D, XIA Y, et al. Stabilizing fluorine to achieve high-voltage and ultra-stable Na3V2(PO4)2F3 cathode for sodium ion batteries[J]. Nano Energy, 2021, 82: doi:10.1016/j.nanoen.2020. 105659. |
41 | JIANG T, CHEN G, LI A, et al. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 604-607. |
42 | GOVER R K B, BRYAN A, BURNS P, et al. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3[J]. Solid State Ionics, 2006, 177(17/18): 1495-1500. |
43 | WANG M X, HUANG X B, WANG H Y, et al. Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries[J]. RSC Advances, 2019, 9(53): 30628-30636. |
44 | 叶帆, 伍凌, 唐式豹, 等. 一步水热法制备钠离子电池正极材料Na3V2(PO4)2F3及其性能研究[J]. 人工晶体学报, 2019, 48(9): 1673-1678. |
YE F, WU L, TANG S B, et al. One step hydrothermal synthesis and electrochemical performances of Na3V2(PO4)2F3 as cathode material for sodium-ion batteries[J]. Journal of Synthetic Crystals, 2019, 48(9): 1673-1678. | |
45 | LIANG K, WANG S J, ZHAO H S, et al. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries[J]. Chemical Engineering Journal, 2022, 428: doi: 10.1016/j.cej.2021.131780. |
46 | SUBRAMANIAN Y, OH W, CHOI W, et al. Optimizing high voltage Na3V2(PO4)2F3 cathode for achieving high rate sodium-ion batteries with long cycle life[J]. Chemical Engineering Journal, 2021, 403: doi: 10.1016/j.cej.2020.126291. |
47 | LIU Q, WANG D X, YANG X, et al. Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life[J]. Journal of Materials Chemistry A, 2015, 3(43): 21478-21485. |
48 | PI Y Q, GAN Z W, YAN M Y, et al. Insight into pre-sodiation in Na3V2(PO4)2F3/C @ hard carbon full cells for promoting the development of sodium-ion battery[J]. Chemical Engineering Journal, 2021, 413: doi: 10.1016/j.cej.2020.127565. |
49 | LI Y S, LIANG X H, ZHONG G B, et al. Fiber-shape Na3V2(PO4)2F3@ N-doped carbon as a cathode material with enhanced cycling stability for Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25920-25929. |
50 | ZHU C B, WU C, CHEN C C, et al. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization[J]. Chemistry of Materials, 2017, 29(12): 5207-5215. |
51 | DENG L, SUN G, GOH K, et al. Facile one-step carbothermal reduction synthesis of Na3V2(PO4)2F3/C serving as cathode for sodium ion batteries[J]. Electrochimica Acta, 2019, 298: 459-467. |
52 | LIU Q, MENG X, WEI Z X, et al. Core/double-shell structured Na3 V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 31709-31715. |
53 | LI L, XU Y L, SUN X F, et al. High capacity-favorable tap density cathode material based on three-dimensional carbonous framework supported Na3V2(PO4)2F3 nanoparticles[J]. Chemical Engineering Journal, 2018, 331: 712-719. |
54 | GU Z Y, GUO J Z, SUN Z H, et al. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries[J]. Science Bulletin, 2020, 65(9): 702-710. |
55 | ZHANG L L, MA D, LI T, et al. Polydopamine-derived nitrogen-doped carbon-covered Na3V2(PO4)2F3 cathode material for high-performance Na-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 36851-36859. |
56 | WANG T S, ZHANG W, LI H X, et al. N-doped carbon nanotubes decorated Na3V2(PO4)2F3 as a durable ultrahigh-rate cathode for sodium ion batteries[J]. ACS Applied Energy Materials, 2020, 3(4): 3845-3853. |
57 | YANG X J, WANG X L, ZHEN W Z. Reversible Na+-extraction/insertion in nitrogen-doped graphene-encapsulated Na3V2(PO4)2F3@C electrode for advanced Na-ion battery[J]. Ceramics International, 2020, 46(7): 9170-9175. |
58 | KOU H R, LI X F, SHAN H, et al. An optimized Al2O3 layer for enhancing the anode performance of NiCo2O4 nanosheets for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(34): 17881-17888. |
59 | LUO W, LIN C F, ZHAO O, et al. Ultrathin surface coating enables the stable sodium metal anode[J]. Advanced Energy Materials, 2017, 7(2): doi: 10.1002/aenm.201601526. |
60 | REED D, COFFEY G, MAST E, et al. Wetting of sodium on β″-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries[J]. Journal of Power Sources, 2013, 227: 94-100. |
61 | KLEE R, WIATROWSKI M, ARAGÓN M J, et al. Improved surface stability of C+MxOy@Na3V2(PO4)3 prepared by ultrasonic method as cathode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(2): 1471-1478. |
62 | CASINO S, HEIDRICH B, MAKVANDI A, et al. Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells[J]. Journal of Energy Storage, 2021, 44: doi: 10.1016/j.est.2021.103479. |
63 | CEYLAN E C, ERDOL Z, SAKAR B, et al. Investigation of the effect of using Al2O3-nafion barrier on room-temperature Na-S batteries[J]. The Journal of Physical Chemistry C, 2017, 121(28): 15120-15126. |
64 | MA D, ZHANG L L, LI T, et al. Enhanced electrochemical performance of carbon and aluminum oxide co-coated Na3V2(PO4)2F3 cathode material for sodium ion batteries[J]. Electrochimica Acta, 2018, 283: 1441-1449. |
65 | PHAN A T, GHERIBI A E, CHARTRAND P. Coherent and Para-equilibrium phase transformations in Mn-doped-LiFePO4 cathode materials: Implications for lithium ion battery performances[J]. Journal of Alloys and Compounds, 2020, 838: doi:10.1016/j.jallcom.2020.155550. |
66 | LIU P W, ZHANG Y N, DONG P, et al. Direct regeneration of spent LiFePO4 cathode materials with pre-oxidation and V-doping[J]. Journal of Alloys and Compounds, 2021, 860: doi:10.1016/j.jallcom.2020.157909. |
67 | CUI Z H, GUO X, REN J Q, et al. Enhanced electrochemical performance and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries[J]. Electrochimica Acta, 2021, 388: doi: 10.1016/j.electacta.2021.138592. |
68 | ZHANG D X, WANG J, DONG K Z, et al. First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4[J]. Computational Materials Science, 2018, 155: 410-415. |
69 | BAI Y X, ZHANG J, YANG Y B, et al. Enhance electrochemical performance of LiFePO4 cathode material by Al-doped Li7La3Zr2O12 and carbon co-coating surface modification[J]. Journal of Alloys and Compounds, 2020, 843: doi: 10.1016/j.jallcom.2020.154915. |
70 | GOONETILLEKE D, FAULKNER T, PETERSON V K, et al. Structural evidence for Mg-doped LiFePO4 electrode polarisation in commercial Li-ion batteries[J]. Journal of Power Sources, 2018, 394: 1-8. |
71 | HU G R, GAO X G, PENG Z D, et al. Influence of Ti4+ doping on electrochemical properties of LiFePO4/C cathode material for lithium-ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(2): 296-300. |
72 | KOSOVA N V, REZEPOVA D O. Mixed sodium-lithium vanadium fluorophosphates Na3- xLixV2(PO4)2F3: The origin of the excellent high-rate performance[J]. Journal of Power Sources, 2018, 408: 120-127. |
73 | LI L Y, LIU X H, TANG L B, et al. Improved electrochemical performance of high voltage cathode Na3V2(PO4)2F3 for Na-ion batteries through potassium doping[J]. Journal of Alloys and Compounds, 2019, 790: 203-211. |
74 | ZHANG J X, LAI Y Y, LI P, et al. Boosting rate and cycling performance of K-doped Na3V2(PO4)2F3 cathode for high-energy-density sodium-ion batteries[J]. Green Energy & Environment, 2021: doi: 10.1016/j.gee.2021.01.001. |
75 | CRIADO A, LAVELA P, PÉREZ-VICENTE C, et al. Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 856: doi: 10.1016/j.jelechem.2019.113694. |
76 | YI H M, LING M X, XU W B, et al. VSC-doping and VSU-doping of Na3V2- xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties[J]. Nano Energy, 2018, 47: 340-352. |
77 | BIANCHINI M, XIAO P H, WANG Y, et al. Additional sodium insertion into polyanionic cathodes for higher-energy Na-ion batteries[J]. Advanced Energy Materials, 2017, 7(18): doi: 10.1002/ aenm.201700514. |
78 | LIU W Q, YI H M, ZHENG Q, et al. Y-Doped Na3V2(PO4)2F3 compounds for sodium ion battery cathodes: Electrochemical performance and analysis of kinetic properties[J]. Journal of Materials Chemistry A, 2017, 5(22): 10928-10935. |
79 | LI L, XU Y L, CHANG R, et al. Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for sodium-Ion batteries[J]. Energy Storage Materials, 2021, 37: 325-335. |
80 | MAO Y J, ZHANG X, ZHOU Y P, et al. Microwave-assisted synthesis of porous nano-sized Na3V2(PO4)2F3@C nanospheres for sodium ion batteries with enhanced stability[J]. Scripta Materialia, 2020, 181: 92-96. |
81 | YI H M, LIN L, LING M X, et al. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method[J]. ACS Energy Letters, 2019, 4(7): 1565-1571. |
82 | YAN G, MARIYAPPAN S, ROUSSE G, et al. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material[J]. Nature Communications, 2019, 10: 585. |
83 | PENG M H, WANG X Y, GUO G S. Synthesis of nano-Na3V2(PO4)2F3 cathodes with excess Na+ intercalation for enhanced capacity[J]. Applied Materials Today, 2020, 19: doi:10.1016/j.apmt.2020. 100554. |
84 | YAO Y, ZHANG L, GAO Y, et al. Assembly of Na3V2(PO4)2F3@C nanoparticles in reduced graphene oxide enabling superior Na+ storage for symmetric sodium batteries[J]. RSC Advances, 2018, 8(6): 2958-2962. |
[1] | 姚祯, 张琦, 王锐, 刘庆华, 王保国, 缪平. 生物质衍生碳材料在全钒液流电池电极方面的应用[J]. 储能科学与技术, 2022, 11(7): 2083-2091. |
[2] | 徐雄文, 聂阳, 涂健, 许峥, 谢健, 赵新兵. 普鲁士蓝正极软包钠离子电池的滥用性能[J]. 储能科学与技术, 2022, 11(7): 2030-2039. |
[3] | 申晓宇, 岑官骏, 乔荣涵, 朱璟, 季洪祥, 田孟羽, 金周, 闫勇, 武怿达, 詹元杰, 俞海龙, 贲留斌, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.4.1—2022.5.31)[J]. 储能科学与技术, 2022, 11(7): 2007-2022. |
[4] | 周伟, 符冬菊, 刘伟峰, 陈建军, 胡照, 曾燮榕. 废旧磷酸铁锂动力电池回收利用研究进展[J]. 储能科学与技术, 2022, 11(6): 1854-1864. |
[5] | 张平, 康利斌, 王明菊, 赵广, 罗振华, 唐堃, 陆雅翔, 胡勇胜. 钠离子电池储能技术及经济性分析[J]. 储能科学与技术, 2022, 11(6): 1892-1901. |
[6] | 张浩然, 车海英, 郭凯强, 申展, 张云龙, 陈航达, 周煌, 廖建平, 刘海梅, 马紫峰. Sn掺杂NaNi1/3Fe1/3Mn1/3-x Sn x O2 正极材料制备及其电化学性能[J]. 储能科学与技术, 2022, 11(6): 1874-1882. |
[7] | 张言, 王海, 刘朝孟, 张德柳, 王佳东, 李建中, 高宣雯, 骆文彬. 锂离子电池富镍三元正极材料NCM的研究进展[J]. 储能科学与技术, 2022, 11(6): 1693-1705. |
[8] | 赵易飞, 杨振东, 李凤, 谢召军, 周震. 氮掺杂碳包覆Na3V2 (PO4 ) 2F3 钠离子电池正极材料的制备与性能[J]. 储能科学与技术, 2022, 11(6): 1883-1891. |
[9] | 乔荣涵, 岑官骏, 申晓宇, 田孟羽, 季洪祥, 田丰, 起文斌, 金周, 武怿达, 詹元杰, 闫勇, 贲留斌, 俞海龙, 刘燕燕, 黄学杰. 锂电池百篇论文点评(2022.2.1—2022.3.31)[J]. 储能科学与技术, 2022, 11(5): 1289-1304. |
[10] | 刘倩楠, 胡伟平, 轷喆. 钠离子电池磷基负极材料研究进展[J]. 储能科学与技术, 2022, 11(4): 1201-1210. |
[11] | 胡海燕, 侴术雷, 肖遥. 基于分子轨道杂化的高电压钠离子电池层状氧化物正极材料[J]. 储能科学与技术, 2022, 11(4): 1093-1102. |
[12] | 段赞, 李玲芳, 柳鹏辉, 肖东方. MXenes系储能材料的先进制备手段与储能机制综述[J]. 储能科学与技术, 2022, 11(3): 982-990. |
[13] | 吴渺, 赵贵青, 仇中柱, 王保峰. 一种新型水系锌离子电池正极材料NiCo2O4 的制备和电化学性能[J]. 储能科学与技术, 2022, 11(3): 1019-1025. |
[14] | 任重民, 王斌, 陈帅帅, 李华, 陈珍莲, 王德宇. 层状正极材料力学劣化及改善措施[J]. 储能科学与技术, 2022, 11(3): 948-956. |
[15] | 赵志强, 刘恒均, 徐熙祥, 潘圆圆, 李庆浩, 李洪森, 胡涵, 李强. 储能科学中的磁性表征技术[J]. 储能科学与技术, 2022, 11(3): 818-833. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||