储能科学与技术 ›› 2022, Vol. 11 ›› Issue (1): 379-396.doi: 10.19799/j.cnki.2095-4239.2021.0295

• 储能技术经济性分析 • 上一篇    下一篇

基于CiteSpace的锂离子电池用低温电解液知识图谱分析

胡华坤(), 李新丽, 薛文东(), 蒋朋, 李勇   

  1. 北京科技大学材料科学与工程学院,北京 100083
  • 收稿日期:2021-06-29 修回日期:2021-07-30 出版日期:2022-01-05 发布日期:2022-01-10
  • 通讯作者: 薛文东 E-mail:S20200312@xs.ustb.edu.cn;xuewendong@ustb.edu.cn
  • 作者简介:胡华坤(1997—),男,硕士研究生,研究方向为新能源材料及无机功能材料,E-mail:S20200312@xs.ustb.edu.cn|薛文东,教授,研究方向为新能源材料和无机非金属功能材料,E-mail:xuewendong@ustb.edu.cn
  • 基金资助:
    中央高校基本科研基金项目(FRF-MP-20-28)

Knowledge map analysis of a low-temperature electrolyte for lithium-ion battery based on CiteSpace

Huakun HU(), Xinli LI, Wendong XUE(), Peng JIANG, Yong LI   

  1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2021-06-29 Revised:2021-07-30 Online:2022-01-05 Published:2022-01-10
  • Contact: Wendong XUE E-mail:S20200312@xs.ustb.edu.cn;xuewendong@ustb.edu.cn

摘要:

锂离子电池(LIBs)在低温条件下会出现阻抗增大、嵌入/脱嵌锂不平衡、循环效率降低、容量衰减等现象,导致充电比放电更加困难,严重影响了LIBs的低温性能,其中对LIBs低温性能影响最大的是电解液。电解液在低温下黏度变大,与电极材料和隔膜之间的相容性变差,导致离子电导率降低,电荷转移电阻增大,最终导致电池性能下降。本文基于web of science核心合集数据库对LIBs用低温电解液有关文献进行可视化图谱分析。利用CiteSpace分析后可知,低温电解液的研究经历可分为三个阶段:起步阶段、平稳阶段和快速发展阶段。研究力量主要集中在中国、美国、日本、德国等国家,中国逐渐成为科研的核心力量。各个国家、科研机构之间的合作越来越密切,越来越多的科研人员参与到研究中来。目前开发新型低温电解液主要有两条路线:①设计低黏度、高离子电导率的多元电解液,辅以功能添加剂来提升低温性能;②通过研究SEI膜的界面结构和性质,设计高扩散系数的电极材料增大Li+在低温下的迁移率以此提升低温性能。除此以外,未来固体电解质的突破有可能彻底解决LIBs低温性能不良的问题。与此同时,结合计算材料科学可以加速研发过程,有助于产学研的深度融合。

关键词: 锂离子电池, 低温电解液, CiteSpace, 可视化分析

Abstract:

At low temperature, lithium-ion batteries (LIBs) will show impedance increases, intercalated/deintercalated lithium imbalance, low cycle efficiency, capacity fading, and other phenomena, which would result in the charge becoming more difficult than the discharge. Consequently, this seriously affects the low-temperature performance of LIBs. The electrolyte has the greatest impact on the low-temperature performance of LIBs. The electrolyte viscosity increases at low temperature and at poor compatibility with the electrode materials and separators. This results in the decrease of the ionic conductivity and the increase of the charge transfer resistance, which will eventually lead to battery performance degradation. The present study analyzes the visualization map of the low-temperature electrolyte literature for LIBs based on the Web of Science Core Collection database. The CiteSpace analysis shows that research on low-temperature electrolytes can be divided into three stages: initial, stable, and rapid development stages. Research forces are mainly concentrated in China, the United States, Japan, and Germany, among other countries. Accordingly, China is gradually becoming the core force of scientific research. Moreover, countries and research institutions are closely cooperating with each other, and an increasing number of researchers are participating in studies. Two main routes are used to develop a new low-temperature electrolyte: ① a multi-component electrolyte with low viscosity and high ionic conductivity is designed and supplemented by functional additives to improve the low-temperature performance; and ② by studying the interface structure and properties of the SEI film, the electrode material with a high diffusion coefficient is designed to increase the Li+ mobility at low temperature and improve the low-temperature performance. In the future, the solid electrolyte breakthrough may completely solve the problem of the poor low-temperature performance of LIBs. At the same time, the combination of computational materials science can accelerate the research and development process and contribute to the deep integration of the industry, university, and research.

Key words: lithium-ion battery, low-temperature electrolyte, CiteSpace, visual analysis

中图分类号: